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Abstract

Nowmore than ever, organizations such as companies, governments, and researchers collect and

analyze people’s personal data to drive decisions and fuel innovation. Differential privacy has

become the gold standard for protecting privacy in computer science, particularly for privacy-

preserving data analyses and machine learning. Differential privacy is a mathematical definition

of privacy that provides quantifiable protections for inferences that can be made when contribut-

ing one’s data to an analysis by adversaries with access to arbitrary auxiliary information. Sig-

nificant research effort has been devoted to designing and analyzing mechanisms that satisfy

differential privacy. However, far less research to date has studied the pragmatic considerations

of differential privacy, i.e., how its trust models and mechanisms can be adapted and applied for

real-world uses.

In this thesis, we focus on making differential privacy useful for real-world applications by

removing barriers that hinder its adoption in practice. In the first part of the thesis, we address

the utility gap between the more and less desirable trust models of differential privacy. Towards

this, we define a new “hybrid“ differential privacy trust model and design and analyze high-utility

mechanisms for multiple applications within it. In the second part of the thesis, we address the

lack of tools for analyzing the utility of complex differentially private mechanisms. We do so

by developing a new method for quantifying the privacy–utility trade-off of complex, hyperpa-

rameterized, differentially private mechanisms. Assessing our new method across a multitude of

private machine learning tasks, we find that it is highly effective at quantifying suchmechanisms’

privacy–utility trade-offs. In the third and final part of the thesis, we address the open question of

xii



how to improve the utility of large-scale query-answering differentially private mechanisms. We

extend the state-of-the-art differentially private mechanism for this problem and, in two different

settings, find that it can efficiently and effectively answer a massive number of queries.
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Chapter 1

Introduction

Data is the new oil. Like oil, data is valuable, but if unrefined it cannot really be used.

- Clive Humby, 2006

Mathematician Clive Humby’s famous quote has proven increasingly accurate in the years that

followed it. Today’s internet is entirely powered by the data of its users, and in turn, influences

nearly every facet of our lives. More than that, everyday decisions by businesses, governments,

and researchers are driven by data. Just as there are risks involved in drilling, refining, and using

oil, so too are there risks involved in collecting, processing, and using people’s data. The risk we

focus on in this thesis is that of privacy leakage, which is the ability for an unwanted party to

learn private information about an individual based on their data. Privacy leakage can be trivially

eliminated by simply never collecting or using one’s data — however, such an approach would

mean that many important research studies could not be performed, useful data-driven algo-

rithms could not be used, and critical government and business analyses could not be conducted.

Thus, akin to never refining oil, never using one’s data renders it worthless.

To preserve individuals’ privacy while maintaining the usefulness of their data, the classic ap-

proachwas to anonymize the data using techniques such as data redaction, data swapping [DR82],

k-anonymity [SS98], l-diversity [Mac+07], and others. However, such ad hoc data anonymiza-

tion techniques do not provide strong and mathematically rigorous guarantees against privacy
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leakage and are susceptible to linkage or background knowledge attacks. These are attacks where

an adversary links some auxiliary information (which the anonymization procedure could not

account for) with the anonymized data to partially or wholly deanonymize it. Real-world high-

profile privacy leaks from anonymized data sources have demonstrated that data anonymization

is insufficient for providing individuals with even a moderate level of privacy protection. These

privacy leaks included medical records for Massachusetts state employees [Swe97], search histo-

ries of AOL users [BZH06], movie ratings of Netflix viewers [NS08], genome sequences in Gen-

Bank [Gym+13], and US Census responses [Bur22; Dic+22]. These examples, along with many

others, motivate the need for a formal definition of privacy that enables strong and mathemati-

cally rigorous guarantees against privacy leakage, even in the face of adversaries who can acquire

arbitrary auxiliary information.

1.1 Differential Privacy

Grounded in part by the motivation to overcome the problems posed by the potential availability

of auxiliary information, the definition of differential privacy [Dwo+06b] (DP) was introduced

in 2006. Differential privacy overcomes these problems by turning the focus away from judging

whether the data itself is anonymized and, instead, toward the mechanism (i.e., algorithm) that

processes the data in order to avoid privacy leakage. Concretely, differential privacy introduces

a constraint on the amount of information that a mechanism’s output can reveal about any in-

dividual whose data was used in its input compared to what the mechanism’s output can reveal

when that individual’s data is not used. Informally, for a mechanism to satisfy the DP constraint,

the mechanism’s output distribution must be approximately the same when any individual’s data

used in its input is changed. This is accomplished by carefully incorporating randomness into

the mechanism, enabling a certain plausible deniability for anyone whose data might have been

used by the mechanism.
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The approximate sameness of output distributions is controlled by a parameter ϵ, which serves

as a knob that trades off privacy and utility. That is, a smaller value of ϵ implies more similar out-

put distributions, which necessitates more randomness in themechanism and thus yields a higher

level of privacy. On the other hand, a larger value of ϵ implies that output distributions can be

more distinct; therefore, less randomness in the mechanism is needed, making its output more

useful (i.e., higher utility). The effect of this definition is that for any adversary analyzing the

output of a DP mechanism, ϵ controls the confidence with which the adversary can determine

any additional information about those whose data was used by the mechanism relative to those

whose data was not. Concretely, a larger ϵ allows the adversary to infer more about any individ-

ual’s data, while a smaller ϵ allows the adversary to infer less. The power of DP primarily stems

from the fact that it is purely a property of the mechanism that accesses data, which means its

proven guarantees against privacy leakage remain intact regardless of any auxiliary information

an adversary may acquire. Therefore, the output of a DP mechanism with a small ϵ will never

provide a significant amount of information about any individual’s data even if an adversary ob-

tains arbitrary auxiliary information, including information about the individual in question or

about the other individuals whose data was used.

Due to the power of the differential privacy framework and through a significant under-

taking by the research community since its introduction in 2006, DP has become the de facto

standard for privacy-preserving data analysis and machine learning in computer science lit-

erature. Industry and government entities have followed suit, with a select number of large-

scale, real-world deployments of DP by Google [EPK14; Pap19; Akt+20; Bav+20; Bav+21], Ap-

ple [Tea17], Snap [Pih+22], Microsoft [DKY17; Kop21], and the U.S. Census Bureau [Daj+17].

Most recent efforts include open-source DP libraries by IBM [Hol+19], OpenDP [GHV20], and

Tumult Labs [Ber+22].
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In the remainder of this section, we briefly introduce the technical details of differential pri-

vacy that are foundational for this thesis
1
. We first state the formal definition of differential

privacy, then describe important properties of DP that follow directly from its definition. We

then detail select fundamental DP mechanisms, which we use as building blocks for the more

advanced mechanisms in this thesis.

1.1.1 Defining Differential Privacy

As previously described, differential privacy limits the impact that any individual’s data can have

on the output of a mechanism. That is, it is a constraint on a mechanismM that takes as input

a potentially sensitive dataset D and outputsM(D). Informally, the constraint specifies that

the outputM(D) must be approximately indistinguishable from the output of the mechanism

M(D′) on any similar dataset D′. Formally, this notion is captured in the definition of DP.

Definition 1.1.1 (Differential Privacy [Dwo+06b]). A randomizedmechanismM is (ϵ, δ)-differentially

private if and only if for all neighboring input datasetsD andD′ that differ in precisely one indi-

vidual’s data, the following inequality is satisfied for all possible sets of outputs Y ⊆ Range(M):

Pr[M(D) ∈ Y ] ≤ eϵ Pr[M(D′) ∈ Y ] + δ.

The setting where δ = 0 is referred to as pure differential privacy and the mechanism is said to

satisfy ϵ-DP. The setting where δ > 0 is referred to as approximate differential privacy.

Importantly, the probabilities in this definition’s inequality refer only to the mechanismM’s

internal randomness, not any probabilistic properties that the dataset may have. Furthermore,

for the privacy guarantee to be meaningful, it is assumed that the mechanism does not reveal

the concrete realizations of its internal randomness. The non-negative real values ϵ and δ are

often referred to as the privacy level or privacy cost, and a maximum bound on the privacy cost

1
For a more detailed treatment on this material and other DP topics, refer to Dwork and Roth’s textbook on

differential privacy [DR+14].
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is referred to as the privacy budget. Increasing values of either ϵ or δ imply less privacy but

may enable DP mechanisms to achieve greater utility. The additive δ term can be interpreted

as a bound on the probability that the mechanism fails to satisfy ϵ-DP, potentially resulting in

significant privacy leakage for any user whose data is in the dataset D. Because of this, it is

common practice to choose δ to be a relatively small value; i.e., δ ≪ 1/|D|.

Three fundamental properties of DP mechanisms that we use throughout this thesis follow

directly from the DP definition.

• Post-processing: When a differentially private mechanism processes data, any further

data-independent analysis of the mechanism’s output will not weaken the differential pri-

vacy guarantee. Intuitively, this means that even with the help of outside data sources, an

adversary cannot weaken one’s privacy by “thinking hard” about the mechanism’s output.

• Sequential Composition: One’s data can be used repeatedly in multiple differentially pri-

vate computations. However, the differential privacy guarantee degrades with each such

computation. The basic composition theorem ([Dwo+06a], Theorem 1) states that if mecha-

nismsM1, . . . ,Mk each satisfy (ϵ1, δ1)-DP, . . . , (ϵk, δk)-DP, then themechanism that com-

poses them sequentiallyM[k](D) = (M1(D), . . . ,Mk(D)) satisfies (
∑k

i=1 ϵi,
∑k

i=1 δi)-DP.

• Parallel Composition: A dataset can be partitioned and separately used in independent

differentially privatemechanismswithout accumulating a privacy cost for eachmechanism.

Formally, if k mechanismsM1, . . . ,Mk each satisfy (ϵ1, δ1)-DP, . . . , (ϵk, δk)-DP and an in-

put datasetD is partitioned into k disjoint subsets asD1, . . . , Dk, then the mechanism that

composes them in parallelM[k](D) = (M1(D1), . . . ,Mk(Dk)) satisfies (max
i∈[k]

ϵi,max
i∈[k]

δi)-

DP ([McS09], Theorem 4).

Together, these properties are extremely powerful for two reasons. The first is that they allow

reasoning about how an individual’s privacy diminishes as their data is used in various analyses.

The second is that they allow designing a complex DP mechanism by combining multiple DP and
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non-DP mechanisms, all without necessitating a novel privacy analysis for the newly designed

mechanism.

1.1.2 Achieving Differential Privacy

The definition of differential privacy only tells us the constraint that a mechanism must have, not

what the mechanism is or how to design the DP mechanism to solve a problem. We now describe

the fundamental DP mechanisms and corresponding concepts that we build on in the thesis.

Randomized Response Mechanism

Themost basic non-trivial DPmechanism is theRandomized Responsemechanism [War65; Dwo11],

which interestingly predates differential privacy by half a century. The purpose of the Random-

ized Response mechanism is simple: given a binary value as input, it releases a privatized version

of it as a single binary value. Despite this simplicity, it is widely used as a fundamental building

block in designing and analyzing more advanced DPmechanisms. In fact, we significantly extend

the Randomized Response mechanism in Chapter 2. It is formally defined as follows.

Definition 1.1.2 (Randomized Response mechanism). Let x be an input dataset consisting of a

single bit. Given p ∈ [1/2, 1], the Randomized Response mechanismMRR is defined as:

MRR(x) =


x with probability p

1− x otherwise.

(1.1)

Theorem 1.1.3. The Randomized Response mechanismMRR satisfies (ϵ, δ)-DP when p = eϵ+δ
eϵ+1

.

Proof. ForMRR to satisfy differential privacy, both of the following inequalities must hold:

Pr[MRR(x) = x] ≤ eϵ Pr[MRR(1− x) = x] + δ, and

Pr[MRR(1− x) = x] ≤ eϵ Pr[MRR(x) = x] + δ.
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With the given parameter p, these inequalities are respectively equivalent to

p ≤ eϵ(1− p) + δ, and

1− p ≤ eϵp+ δ.

The former reduces to p ≤ eϵ+δ
eϵ+1

, while the latter is trivially satisfied (predicated on p ≥ 1/2).

Therefore, setting p = eϵ+δ
eϵ+1

ensures that the differential privacy constraints hold on arbitrary

input x, thus concluding the proof.

Recall that the high-level purpose of performing a private data analysis is to make use of the

data while simultaneously ensuring privacy. So far, we have only discussed the privacy of the

mechanism. However, the conclusion of this proof invites our first opportunity to formally con-

sider the utility of a DP mechanism, as well as the privacy–utility trade-off of DP mechanisms in

general. Specifically, one may wonder why we choose p = eϵ+δ
eϵ+1

given that any p ∈
[
1/2, eϵ+δ

eϵ+1

]
is

sufficient to achieve (ϵ, δ)-DP. Since p represents the probability that the bit is truthfully reported

(where 1−p represents the probability that flipped bit is reported instead), intuition suggests that

privacy should increase as p decreases towards 1/2. In fact, this intuition is correct — any value

of p < eϵ+δ
eϵ+1

would allow the mechanism to satisfy (ϵ, δ)-DP, and it would also satisfy (ϵ′, δ′)-DP

for some ϵ′ < ϵ and δ′ < δ. However, once we consider the utility of a mechanism —which, in the

simple case of the Randomized Response mechanism, we can informally consider to be measured

as the probability of truthfully reporting the bit (p) — we see that privacy and utility are directly

at odds. Thus, the reason we choose p = eϵ+δ
eϵ+1

is because this choice induces the greatest possible

utility for the Randomized Response mechanism while still ensuring that the mechanism satis-

fies (ϵ, δ)-DP. To attain higher utility with this mechanism, pmust be increased, which decreases

privacy; conversely, to attain higher privacy, p must be decreased, which decreases utility. This

is a concrete illustration of a central concept in differential privacy, the privacy–utility trade-off,

a problem we address for more complex mechanisms in depth in Chapter 3.
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Additive Noise Mechanisms

The most common approach to achieving differential privacy is through the use of additive noise

mechanisms. Informally, these mechanisms compute some function’s true (non-private) value,

then perturb the value using carefully calibrated noise from a random distribution (typically with

mean 0). Examples of distributions that have been used to ensure differential privacy include the

Laplace [Dwo+06b], Gaussian [Dwo+06a], binomial [Dwo+06a], geometric [GRS12], and discrete

Gaussian [CKS20] distributions. Here, we introduce the two most popular corresponding mecha-

nisms which we utilize extensively throughout this thesis: the Laplace mechanismMLap and the

Gaussian mechanismMGauss.

We begin with the Laplace mechanism, defining it and stating its privacy guarantee. Infor-

mally, the Laplace mechanism adds random noise to a function’s true value from the Laplace

distribution calibrated to the function’s ℓ1 sensitivity (i.e., how much any hypothetical individual

could influence the function’s value).

Definition 1.1.4 (Laplace mechanism). Let D ∈ X be the input dataset, f : X → Rk
be an

arbitrary function, and b be a non-negative real value. Define ∆1(f) = sup
D′,D′′

||f(D′)− f(D′′)||1,

where the supremum is over all possible neighboring datasetsD′, D′′ ∈ X that differ in precisely

one individual’s data. The Laplace mechanism is defined as:

MLap(D) = f(D) + (Y1, . . . , Yk),

where each Yi is independently drawn from the 0-mean Laplace(b) distribution.

Theorem 1.1.5 ([Bal+20]). The Laplace mechanismMLap satisfies (ϵ, δ)-DPwhen b =
∆1(f)

ϵ−2 ln(1−δ) .

Now we define the Gaussian mechanism, then state two different variants of its privacy guar-

antee. Informally, the Gaussian mechanism adds random noise to a function’s true value from

the Gaussian distribution calibrated to the function’s ℓ2 sensitivity.
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Definition 1.1.6 (Gaussian mechanism). Let D ∈ X be the input dataset, function f : X → Rk

be an arbitrary function, and σ be a non-negative real value. Define∆2(f) = sup
D′,D′′

||f(D′)− f(D′′)||2,

where the supremum is over all possible neighboring datasetsD′, D′′ ∈ X that differ in precisely

one individual’s data. The Gaussian mechanism is defined as:

MGauss(D) = f(D) + (Y1, . . . , Yk),

where each Yi is independently drawn from the Normal(0, σ2) distribution.

The advantage of the Gaussian mechanism over the Laplace mechanism is that when ℓ2 sen-

sitivity is significantly lower than ℓ1 sensitivity, the Gaussian mechanism can add significantly

less noise to the function’s true value. In other words, the Gaussian mechanism can attain higher

utility. However, unlike the Laplace mechanism, the Gaussian mechanism is never able to satisfy

pure DP; i.e., it cannot satisfy (ϵ, 0)-DP for any ϵ.

Theorem 1.1.7 (Standard analysis, [DR+14]). For ϵ, δ ∈ (0, 1), the Gaussian mechanismMGauss

satisfies (ϵ, δ)-DP when σ >
√

2 ln(1.25/δ)∆2(f)/ϵ.

Theorem 1.1.8 (Optimal analysis, [BW18]). LetΦ(t) denote the cumulative distribution function

of the standard normal distribution Norm(0, 1) at a point t. The Gaussian mechanismMGauss

satisfies (ϵ, δ)-DP if and only if

δ ≥ Φ

(
∆2(f)

2σ
− ϵσ

∆2(f)

)
− eϵΦ

(
−∆2(f)

2σ
− ϵσ

∆2(f)

)
.

The former theorem regarding the Gaussian mechanism’s privacy is the weaker of the two,

meaning it requires a larger magnitude of noise from the Gaussian distribution to achieve the

same DP guarantee. On the other hand, the latter theorem is optimal. I.e., for fixed ϵ, δ and ∆2,

the minimal σ satisfying Theorem 1.1.8’s inequality is the minimum possible σ that the Gaussian

mechanism can use while still satisfying (ϵ, δ)-DP. Despite this optimality, the former is more

9



often leveraged in analyses and implementations involving the Gaussian mechanism due to its

simple, closed-form expression. We have included both theorems to illustrate two points: (1)

different analyses of the same differentially private mechanism can yield different differential

privacy guarantees, and (2) although a mechanism or its analysis may be optimal, practitioners

may opt for a suboptimal alternative if it better suits their needs.

1.2 Overview and Contributions

Despite the aforementioned real-world deployments of DP, significant barriers still hinder the

wider adoption of differential privacy by companies, governments, and individual practitioners.

One primary barrier is that attempting to solve a task with DP at a desired privacy level often

results in inadequate utility. The sources of this barrier, however, are distinct and span the entire

conceptual stack of differential privacy. We have categorized these sources into three distinct

challenges:

1. The utility gap between the more and less desirable trust models of differential privacy.

2. The lack of tools for analyzing the complex, hyperparameterized DP mechanisms’ utilities.

3. The open question of how to improve DP large-scale query-answering mechanisms’ effec-

tiveness and efficiency.

In this thesis, we address each of these challenges in order

tomake differential privacymore useful for real-world ap-

plications by removing barriers that hinder its adoption.

Individually in each chapter, we address these challenges in the following ways.
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Chapter 2: The Hybrid Model of Differential Privacy

In the first part of the thesis, we address the first identified challenge: There is a significant

utility gap between the more and less desirable trust models of differential privacy. We start by

describing the traditional trust models of DP, each with its own strengths and weaknesses. We

then detail scenarios where these traditional trust models are not the best match for individuals’

privacy expectations or data curators’ privacy and utility goals. We suggest that in such scenarios,

one can instead consider more relaxed trust models. Towards this, we define a “hybrid” DP trust

model, which allows a combination of the traditional trust models.

Within this hybrid trust model, we thoroughly explore several important topics to understand

the model’s strength and to answer the high-level question of the chapter:

Within the hybrid model, how can we design DP mechanisms

that achieve high utility for problems of practical interest?

The specific topics that we explore are:

• How the utility of a mechanism in the hybrid model can be best understood and

contextualized relative to the classic trust models.

• How mechanisms in the hybrid model can be designed for problems of practical

interest.

• How the privacy and utility of mechanisms in the hybrid model depend on the

computations performed and on assumptions regarding the individuals’ data in

their respective traditional trust models.

To address these topics, we design and analyze high-utility DP mechanisms in the hybrid model

for two practical applications: heavy hitter discovery and estimation as well as mean estimation.

In these applications, we theoretically and empirically show that the hybrid model can be more

powerful than the classic trust models it is built upon.
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Chapter 3: Quantifying the Privacy–Utility Trade-off

In the second part of the thesis, we address the second identified challenge: There is a lack of

tools available for analyzing complex DP mechanisms’ utilities. We specifically focus on the

problem of quantifying the trade-off between privacy and utility of complex, hyperparameterized

DP mechanisms. Unlike for simple DP mechanisms, where one can use analytical tools to reason

about this trade-off, such tools are often unavailable for more complex DP mechanisms (e.g.,

those used for machine learning tasks). Moreover, DP mechanisms for these tasks often have

many hyperparameters that affect not only their utility (as is typical in non-DP mechanisms) but

also their privacy. This makes it difficult even to define what the mechanism’s privacy–utility

trade-off is, let alone quantify it. Thus, the high-level question that we answer in this chapter is:

How can we rigorously define a hyperparameterized DP mech-

anism’s privacy–utility trade-off, and then how can we design

a practical method for quantifying it?

To answer this question, we begin by establishing a rigorous definition for the privacy–utility

trade-off of hyperparameterized DP mechanisms. Based on this definition, we leverage multi-

objective Bayesian optimization tools to develop a method that efficiently quantifies a DP mech-

anism’s privacy–utility trade-off using only empirical measurements. We then thoroughly eval-

uate our new method, finding that it is highly effective for quantifying this trade-off on practical

machine learning tasks.

Chapter 4: Pushing the Boundaries of Private, Large-Scale Query Answering

In the final part of the thesis, we address the third identified challenge: How to improve differ-

entially private mechanisms’ effectiveness and efficiency for the foundational problem of accu-

rately releasing answers to a large number of queries. We address this in two different settings:
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the classic setting in DP where all the queries to be answered are specified to the mechanism in

advance, and a new setting we define where only partial knowledge of the queries is provided to

the mechanism in advance. Within both settings, the high-level question that we answer is:

To what extent are differentially private mechanisms able to

answer a large number of queries efficiently and with low error?

We ground our work in the state-of-the-art DP mechanism for answering prespecified sets of

queries [Ayd+21]. We first perform a thorough reproducibility study on the mechanism’s orig-

inal analysis. In doing so, we improve its implementation, enabling it to answer a significantly

larger number of queries. We then extend themechanism’s capabilities to answer r-of-k threshold

queries — a more powerful, general class of queries than previously considered in non-theoretical

works. In both settings, we thoroughly evaluate the extended mechanism, finding that it is able

to efficiently and effectively answer extremely large sets of queries.

Taken together, our work advances the state of the art in differential privacy, making it easier to

adopt for real-world uses and improving its practical applicability.
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Chapter 2

The Hybrid Model of Differential Privacy

To address the first high-level challenge of this thesis (Section 1.2) that hinders DP’s adoption in

practice — the significant utility gap between the more and less desirable trust models of DP —

we introduce the hybrid model of DP2. We initiate our study of the hybrid model by describing

its motivation: how in some practical scenarios, the traditional DP trust models are not the best

match for the individuals’ and the data curators’ privacy and utility desiderata. We then define

our hybrid DP trust model as a flexible combination of the traditional DP trust models. Under

this hybrid model, we design mechanisms for two important problems in data science: heavy

hitter discovery and estimation as well as mean estimation. For both problems, we show that

our respective mechanisms achieve high utility relative to mechanisms in the traditional trust

models, thus demonstrating the power of the hybrid model.

2.1 Overview

Prior to our work, only two trust models were primarily considered in DP literature: the trusted-

curator model (TCM) and the local model (LM). In the TCM, the organization (or data curator)

first receives the individuals’ true data, then takes on the responsibility of ensuring that any

analysis performed on that data is differentially private. In the LM, the individuals first privatize

2
This chapter is based on work in our publications [Ave+17; Ave+19; ADK20].
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their own data to ensure DP, then the curator receives this already privatized data. Importantly,

differential privacy is ensured in both models — the only distinction is the timing of when DP is

ensured.

In practice, the LM may be a better match for curators’ and individuals’ privacy goals. Partic-

ularly, in the LM, individuals’ privacy is assured even when they do not trust the curator, and the

curator limits its liability in the face of data leaks. However, it is well understood theoretically

and empirically that there is a utility gap between the models. Specifically, utility is far worse in

the LM than in the TCM [BNO08; Kas+11; BS15; Shi+17].

Based on our observation that the TCM and LM can coexist, we develop a new trust model

to enable the design of DP mechanisms which may bridge this utility gap while being amenable

to practical use. Our hybrid model is a slight relaxation of the LM in which the majority of the

individuals desire privacy in the LM, but where a small fraction of individuals choose to opt in to

contributing their data under the TCM [Ave+17; Ave+19]. We often refer to individuals who opt

in to using the TCM as “opt-in users” and those using the LM as “client users”. The two groups

each use their data under their respective trust models to compute a portion of the overall task.

Each group has the optional ability to interact with the other group to share information that

could potentially help the other group compute their portion of the task. Once both groups have

computed their individual tasks, the curator aggregates their results and processes them into a

final output. This hybrid model system is illustrated in Figure 2.1.

With this new model defined, the question we address in this chapter of the thesis is:

Within the hybrid model, how can we design DP mechanisms

that achieve high utility for problems of practical interest?

Weanswer this high-level question by decomposing it into the following three concrete questions,

which we subsequently address.

1. How can a hybrid mechanism’s utility be best understood and contextualized rela-

tive to the classic trust models?
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Figure 2.1: Overview of our hybrid differential privacy model’s components.

2. How can hybrid mechanisms be designed for problems of practical interest, and

how does their utility compare to the utility of mechanisms in the traditional trust

models?

3. How does the privacy and utility of a hybrid mechanism vary depending on the

computations performed, and on assumptions regarding the two groups of individ-

uals’ data?

Understanding Utility

To understand the utility of a hybrid mechanism, we contextualize it by comparing against base-

line mechanisms in the classic trust models.

• TCM Baseline: Any TCM baseline mechanism must operate only on the data of those indi-

viduals who opted in to the TCM, in order to not violate their trust preferences.
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• LM Baseline: Since the LM requires strictly less trust than the TCM, any LM baseline mech-

anism can be applied to the data of all individuals without violating anyone’s trust.

Thus, we compare a hybrid mechanism’s utility against: (1) the utility of a TCM baseline mech-

anism operating only on the data of the TCM individuals, and (2) the utility of an LM baseline

mechanism operating on all individuals’ data.

To choose the concrete baseline mechanisms in each classic trust model, we consider three

natural strategies. The first candidate strategy is to use the theoretically optimal analogous mech-

anisms in the TCM and LM as baselines. However, optimal differentially private mechanisms are

only known for the simplest of problems; e.g., single-bit queries or linear queries [Li13; GV14;

KOV14; Bas19]. The second candidate strategy is to use the state-of-the-art analogous mecha-

nisms in the TCM and LM as baselines. In practice however, the state-of-the-art mechanisms

may not be widely deployed due to issues with computational overhead, communication cost,

implementation complexity, etc. Thus, the third strategy is to use the most popular analogous

mechanisms in the TCM and LM. In this chapter, we utilize both the second and third strategies

to select baseline mechanisms.

Designing Hybrid Mechanisms

We propose two high-level approaches to leveraging the hybrid model when designing mecha-

nisms.

The first is what we informally call a specialization-based approach, determined by the util-

ities that mechanisms in each classic trust model can achieve for different aspects of a given

problem. Specifically, we: (1) split the problem into disjoint tasks, (2) determine mechanisms

for each task in both the TCM and LM, and then (3) assign tasks to the TCM and LM groups

based on their mechanisms’ relative utility differences (i.e., specialization). We study whether a

hybrid mechanism designed using this specialization-based approach can achieve higher utility
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than both baselines, or if its utility will necessarily lie between (or even below) the two. Con-

cretely, we use this approach to design a hybrid mechanism to address the problem of heavy hitter

discovery and estimation for the particular application of local search (Section 2.2.1). Through

a thorough empirical evaluation, we conclude that in certain scenarios, it is possible for such a

hybrid mechanism to achieve higher utility than both baselines.

The specialization-based approach to designing hybrid mechanisms may not be applicable if

the problem cannot readily be split into separate tasks. For such problems, a simpler approach is

to: (1) apply the baseline TCMmechanism on the TCM individuals’ data, (2) independently apply

the baseline LM mechanism on the LM individuals’ data, and then (3) interpolate their results.

We informally call this the direct-combination approach, and study whether a hybrid mechanism

designed using the direct-combination approach would have utility that is necessarily an interpo-

lation of the baseline mechanisms’ utilities, or if it could achieve higher utility than both baselines

via strategically combining them. Concretely, we study the problem of mean estimation under

the hybrid model by designing hybrid mean estimators that are a direct combination of baseline

estimators in the classic trust models (Section 2.3.2). We then analytically evaluate the utilities

of our hybrid estimators, and compare them against the baselines. We find and characterize sce-

narios where a strategic, direct combination of the two baselines results in a hybrid mechanism

whose utility exceeds both baselines simultaneously.

Group Properties and Interaction

Because the hybrid model is composed of two distinct groups of individuals, the groups’ behavior

and interaction within the hybrid mechanism may influence the mechanism’s privacy and utility.

One way these groups may influence a hybrid mechanism’s utility is through selection bias

stemming from each individual’s decision of whether or not to opt in to the TCM. Towards this,

we study what impact the two groups being dissimilar has on a hybrid mechanism’s utility (Sec-

tion 2.3.5). For the hybrid mean estimation problem, we find and analytically characterize the
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scenarios in which heterogeneity between the groups has no negative impact on the hybridmech-

anism’s utility. Correspondingly, we find and characterize other scenarios where heterogeneity

significantly reduces the mechanism’s utility. For problems other than mean estimation, the im-

pact of group heterogeneity on a hybrid mechanism’s utility remains an open question.

Another way the groups may influence a hybrid mechanism’s utility is through their inter-

group interaction; i.e., through the information they share with each other. An ongoing line of

work in the LM on interactive mechanisms studies how allowing interaction between individual

LM individuals can enable the design of higher utility mechanisms [Kas+11; STU17; SU17; DF19;

Jos+19b]. The difference in our work is that instead of studying how interaction between indi-

viduals can affect utility, we study how interaction across the two groups of individuals can affect

utility. For instance, a hybrid mechanism may have one group first compute a partial solution

for the task (e.g., if this group specializes in that portion of the task), and then share this partial

result with the other group to aid their computation of the final solution. We study whether such

interaction is necessary for hybrid mechanisms to achieve utility greater than the utility of anal-

ogous baseline mechanisms in the traditional trust models (Section 2.3). Our hybrid mechanism

for the heavy hitter discovery and estimation problem utilizes intergroup interaction, whereas

our hybrid mechanism for the mean estimation problem does not. However, both mechanisms

are able to achieve utility greater than their baselines in certain scenarios. This demonstrates that

such intergroup interaction is not always necessary to attain good utility.

Aside from its impact on utility, intergroup interaction may influence a hybrid mechanism’s

privacy. For instance, on one end of the spectrum, it may be that communicating a partial solution

to a task from one group to another couldweaken the first group’s privacy. On the other end of the

spectrum, it may be that the additional randomness induced downstream by the second group’s

application of a DPmechanismmay further obfuscate the underlying data of the individuals in the

first group, thus improving the first group’s privacy against an adversary that only sees the output

of the final computation (and not its intermediate steps). We investigate the extent that intergroup

19



interaction (or lack thereof) impacts the privacy guarantee for individuals in each group relative

to their respective privacy guarantees under their chosen trust models (Section 2.4). For both

the heavy hitter problem and the mean estimation problem, we determine which individuals will

experience improved privacy guarantees, and we precisely quantify the improvement. We find

that depending on the structure of the hybrid mechanism and on the precise method used to

ensure DP, the improvement to users’ privacy guarantees can be significant.

2.2 Heavy Hitter Discovery and Estimation

The first problem that we study under the hybrid model is that of heavy hitter discovery and

estimation. Specifically, in this section of the thesis, the central problem we consider is:

How can we design a high utility hybrid mechanism for the problem of

heavy hitter discovery and estimation?

Heavy hitter discovery and estimation is the problem of finding the most popular items in a

set and then estimating those items’ frequencies. This is a classic and well studied problem in

the context of information retrieval [AS+94; SON95; Toi+96; HPY00; CCFC02; Cor+03]. Because

using these algorithms on sensitive personal data poses privacy risks, there has been significant

research in the DP community on developing privacy-preserving heavy hitter discovery and es-

timation mechanisms. By now, heavy hitter discovery and estimation while preserving DP has

become one of the canonical problems in DP literature under both the TCM [Bha+10; Li+12;

Kor12] and the LM [EPK14; FPE16a; Qin+16].

The state-of-the-art mechanisms in the TCM and LM at the time of this work were that of

Korolova [Kor12] and Qin et al. [Qin+16] respectively. While very different in their implemen-

tations, their high-level designs were roughly the same: first use a portion of the privacy budget

to estimate which items are most likely to be heavy hitters, then use the remaining privacy bud-

get to estimate the frequencies of those particular items. Qin et al. measured the utility of their
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LM mechanism by computing its normalized discounted cumulative gain (NDCG)
3
on real-world

datasets of search queries. The TCM mechanism of Korolova was specifically designed to op-

erate on search log datasets (i.e., datasets of search queries, along with the corresponding URLs

that individuals had clicked on) in order to generate a query click graph
4
. Korolova measured

the utility of their mechanism by performing a side-by-side comparison against the non-private

query click graphs of real-world search logs. Due to its high utility and usability, the principles of

Korolova’s mechanism have been deployed for real-world use in Google’s general-purpose SQL

library [Wil+20].

Our hybrid approach to this problem is motivated by the utility challenges of the mechanisms

in the LM. Although the LM mechanism of Qin et al. achieved significantly higher utility than

prior approaches in the LM, for many practical parameter regimes, its utility was extremely poor.

For instance, computing the top-10 heavy hitters required ϵ > 10 for their mechanism to achieve

90% NDCG on real-world datasets. Similarly, using a practical privacy budget (ϵ = 3) on real-

world datasets, their mechanism was unable to compute even the top-1 heavy hitter with NDCG

exceeding 85%. The reason for this poor utility is due to the heavy hitter discovery portion of the

task, which is significantly more challenging under the LM than under the TCM [BS15; FPE16a;

Bas+20b]. This utility disparity between mechanisms in the two models is what motivates our

hybrid approach: use the TCM individuals for what TCM mechanisms can compute with rela-

tively high utility (heavy hitter discovery), then use the LM individuals for the portion of the task

that LM mechanisms can compute with acceptable utility (frequency estimation).

Local Search Application

We study a real-world application of heavy hitter discovery and estimation: estimating the head

list of a search log dataset to enable local search. The head list of a search log comprises a search

3
NDCG is a standard measure of ranking quality in practice [JK02; Val+09] which takes into account both the

presence/absence of items and their ordering.

4
A query click graph is a graph where vertices correspond to both queries and URLs, with an edge connecting a

query to a URL with weight equal to the number of individuals who posed the query then clicked that URL.
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engine’s most popular queries and their corresponding most clicked URLs. Storing a head list

locally on individuals’ devices makes local search possible: if an individual makes a query from

the head list, results can be returned instantaneously, avoiding the need to communicate with a

server. Such local caching of the most frequent search queries has a disproportionately positive

impact on the expected query latency [Sil10; BY+07], as search engine queries follow a power-

law distribution [BY+08]. Local search can also provide additional benefits, including smoothing

temporary network disruptions or enabling entirely new features in web browsers.

Our Contributions

In practice, the primary challenge to solving local search is estimating the head list while simul-

taneously satisfying the following desiderata: (1) guaranteeing DP for each individual’s data, (2)

respecting each individual’s trust preference, and (3) ensuring high practical utility for the prob-

lem of local search. In this section, we address this challenge by designing and evaluating a DP

head list estimation mechanism within the hybrid model.

First, we thoroughly detail the design of BLENDER, a complex DP mechanism that we design

using a specialization-based approach (Section 2.1) to achieve high-utility differentially private

local search. Specifically, we define its general structure and the roles that the two groups of

users have within it. We then thoroughly detail the sub-mechanisms that comprise BLENDER, and

prove their differential privacy guarantees.

With BLENDER defined, we then specify the utility measures and state-of-the-art baseline

mechanisms in the classic trust models that we use to evaluate the performance of BLENDER.

Finally, we perform a comprehensive empirical evaluation in order to quantify BLENDER’s

utility. The results of the evaluation not only show that BLENDER is able to achieve utility levels

that are useful in practice, but they also answer a fundamental question about the hybrid model.

In particular, BLENDER’s utility is always at least as good as one of the baseline mechanisms.

More importantly, in some scenarios, BLENDER is able to achieve utility greater than both baseline
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Figure 2.2: Architecture diagram of the BLENDER mechanism.

mechanisms simultaneously. This is the first demonstration that hybrid trust models can lead to

non-trivial improvements in utility, and can, in fact, be strictly more powerful than either of the

classic trust models.

2.2.1 Designing BLENDER

To address the DP head list estimation problem — and more generally to address the first two

open questions of this chapter (Section 2.1) in order to begin overcoming the utility challenges

of the LM and trust challenges of the TCM — we design the BLENDER mechanism that operates

in the hybrid model. We provide an informal overview of the system first, and then dive into the

details of its design and formal privacy properties.

2.2.1.1 Informal System Overview

A high-level overview of BLENDER is illustrated in Figure 2.2. The core idea behind BLENDER is to

utilize a complex interaction strategy to take advantage of the aforementioned utility disparity

between the models in the heavy hitter discovery portion of the task.
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Towards this, based on the work of Korolova [Kor12], it first uses most individuals from the

opt-in group (i.e., TCM group) to estimate which queries and corresponding URLs are most pop-

ular. This determines which records (i.e., query/URL pairs ⟨q, u⟩) are in the head list. In addition

to these records, a single “wildcard” record ⟨⋆, ⋆⟩ is included to represent all records in the popu-

lation that were not included in the estimated head list. The small number of remaining reserved

opt-in users (who were not used to estimate which records are in the head list) are then used to

determine the head list records’ order by estimating the empirical frequencies and variances of

those head list records. Finally, the head list is optionally trimmed down to a final desired size.

Next, this estimated head list is sent to each user in the client group (i.e, LM group), bypassing

the need for them to perform the “discovery” portion of the task. The clients then simply use the

head list in conjunction with their own data to independently determine the head list records’

ordering. They do so by also estimating the empirical frequencies and variances of the head

list records. Each client then reports their individual frequency and variance estimates back to

BLENDER.

Finally, BLENDER carefully combines both groups’ frequency estimates (using their corre-

sponding variance estimates) to generate a final ordering of the head list’s queries and URLs.

2.2.1.2 Formal System Overview

We now proceed with the formal algorithmic definition of the BLENDER mechanism. First, we

detail the core mechanism and each high-level stage, including the key parameters. We then

detail the mechanisms that comprise each stage of BLENDER, including their differential privacy

guarantees.

BLENDER Core Algorithm 2.1 presents the precise algorithmic overview of each step, including

key parameters. Lines 1–3 of BLENDER describe the treatment of data from opt-in users, line 4

describes the treatment of data reported by clients, and line 5 describes the process for combining

the probability estimates computed from the two groups. The only distinction between opt-in
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users and clients in terms of privacy guarantees provided is the trust model; other than that,

users from both groups are assured the same (ϵ, δ)-DP guarantee.

Algorithm 2.1 BLENDER

Input
• O,C : The set of opt-in users and clients.

• mO,mC : The maximum number of records to collect from each opt-in and client user.

• fO: The fraction of the opt-in users to use for head list discovery (with the remaining used

for head list estimation).

• fC : the fraction of the clients’ privacy budget to allocate to queries (as opposed to URLs).

• M : The maximum size of the finalized head list.

• ϵ, δ: The differential privacy parameters.

Body
1: Arbitrarily partition O into S and T = O \S, such that |S| = fO|O| and |T | = (1− fO)|O|.
2: LetHLS = DiscoverHeadList(S,mO, ϵ, δ) be the initial head list of records computed based

on opt-in users’ data.

3: Let HL, p̂O, σ̂2
O = EstimateOptinProbabilities(T,mO,HLS,M, ϵ, δ) be the refined head

list of records, their estimated probabilities, and estimated variances based on opt-in users’

data.

4: Let p̂C , σ̂
2
C = EstimateClientProbabilities(C,mC , fC ,HL, ϵ, δ) be the estimated record

probabilities and estimated variances based on client reports.

5: Let p̂ = BlendProbabilities(p̂O, σ̂2
O, p̂C , σ̂

2
C ,HL) be the combined estimate of record prob-

abilities.

6: Return: HL, p̂.

A key feature of BLENDER is that its privacy properties do not depend too strictly on the spe-

cific choices of these sub-mechanisms. That is, the post-processing property of differential pri-

vacy (Section 1.1.1) guarantees that if DiscoverHeadList, EstimateOptinProbabilities, and

EstimateClientProbabilities each satisfy (ϵ, δ)-DP in their respective trust models (which

we later prove they do), then BLENDER also satisfies (ϵ, δ)-DP. This allows changing the sub-

mechanisms if better versions (utility-wise or implementation-wise) are discovered in the future.

Among the parameters of BLENDER, the privacy parameters and the sets of opt-in and client

users can be viewed as externally set. On the other hand, the number of records collected from

each user, the opt-in user group split, and the privacy budget split can all be viewed as knobs

25



that the implementer of BLENDER is at liberty to tweak in order to improve the overall utility of

BLENDER’s results.

Opt-in Group Mechanisms for Head List Discovery and Estimation We now detail the

twomechanisms that are executed on the opt-in users’ data. First, the opt-in users are partitioned

into two sets — S, whose data will be used for initial head list discovery, and T , whose data will

be used to estimate the probabilities and variances of records from the formed initial head list.

The initial head list discovery mechanism, described in Algorithm 2.2, constructs the list in

a differentially private manner using search record data from group S. The mechanism follows

the strategy first introduced by Korolova et al. [Kor+09] by aggregating the records of the opt-in

users from S, and including those records whose noisy count exceeds a threshold in the head list.

The Laplace noise added to the true counts and the threshold are calibrated to ensure DP. The

goal of the mechanism is to approximate the true set of most frequently searched and clicked

search records as closely as possible, while ensuring differential privacy. The DP guarantee of

this mechanism is given in the following lemma.

Lemma 2.2.1. ([Kor12]) DiscoverHeadList satisfies (ϵ, δ)-differential privacy if mO = 1, ϵ >

ln(2), and τ ≥ 1.

Our mechanism differs from previous work in two ways: 1) it replaces the collection and

thresholding of queries with the collection and thresholding of records (i.e., query/URL pairs)

and 2) its definition of neighboring databases is that of databases differing in one user’s record

values, rather than in the removal of one user’s data. These distinctions necessitate the choice of

mO = 1 as well as higher values for noise and threshold than Korolova’s mechanism [Kor12].

For those records included in the initial head list, the mechanism described in Algorithm 2.3

uses the remaining opt-in users’ data (from set T ) to differentially privately estimate all head list

records’ probabilities p̂O. TheM most frequent records in p̂O are retained to form the final head

list. As a post-processing step, variance estimates for each of the probabilities are computed to
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Algorithm 2.2 DiscoverHeadList

Input
• S: A set of opt-in users.

• mO: The maximum number of records to collect from each opt-in user.

• ϵ, δ: The differential privacy parameters.

Body
1: for each user i ∈ S do
2: Let DS,i be the database aggregating at mostmO arbitrary records from i.
3: end for
4: Let DS be the concatenation of all DS,i databases.

5: Let N(r,DS) denote the number of times any record r appears in DS .

6: Let HLS be an empty map.

7: Set bS = 2mO

ϵ
.

8: Set τ = max{bs ·
(
ln(exp( ϵ

2
) +mO − 1)− ln(δ)

)
, 1}.

9: for each distinct ⟨q, u⟩ ∈ DS do
10: Let Y be an independent sample from Laplace(bS).
11: if N(⟨q, u⟩, DS) + Y > τ then
12: Add q to HLS if q ̸∈ HLS .
13: Append u to HLS[q].
14: end if
15: end for
16: Add ⟨⋆, ⋆⟩ to HLS .
17: Return: HLS .
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be used in BLENDER’s final blending stage. We formalize both the mechanism’s DP guarantee and

the unbiasedness of its variance computation as follows.

Algorithm 2.3 EstimateOptinProbabilities

Input
• T : A set of opt-in users.

• mO: The max number of records to collect from each opt-in user.

• HLS : The initial head list of records whose probabilities are to be estimated.

• M : The maximum size of the finalized head list.

• ϵ, δ: The differential privacy parameters.

Body
1: for each user i ∈ T do
2: Let DT,i be the database aggregating at mostmO arbitrary records from i.
3: end for
4: Let DT,i be the database aggregating at mostmO arbitrary records from i.
5: Let N(r,DT ) denote the number of times an arbitrary record r appears in DT .

6: Transform any record ⟨q, u⟩ ∈ DT that does not appear in HLS into ⟨⋆, ⋆⟩.
7: Let p̂O be a vector indexed by records in HLS containing the respective probability estimates.

8: Let σ̂2
O be a vector indexed by records in HLS containing variance estimates of the respective

probability estimate.

9: Let |DT | denote the total number of records in DT .

10: Set bT = 2mO

ϵ−2 ln(1−δ) .

11: for each ⟨q, u⟩ ∈ HLS do
12: Let Y be an independent sample from Laplace(bT ).
13: Set p̂O,⟨q,u⟩ =

1
|DT |(N(⟨q, u⟩, DT ) + Y ).

14: Set σ̂2
O,⟨q,u⟩ =

p̂O,⟨q,u⟩(1−p̂O,⟨q,u⟩)

|DT |−1 +
2b2T

|DT |·(|DT |−1) .

15: end for
16: Let HL map the M queries with the highest estimated marginal probabilities (according to

p̂O) to their respective sets of URLs.

17: For the records not retained in HL, accumulate their estimated probabilities into p̂O,⟨⋆,⋆⟩ and
update σ̂2

O,⟨⋆,⋆⟩ as in line 14.

18: Return: HL, p̂O, σ̂2
O.

Lemma 2.2.2. ([Bal+20]) EstimateOptinProbabilities satisfies (ϵ, δ)-differential privacy if

mO = 1.

Lemma 2.2.3. σ̂2
O,⟨q,u⟩ is an unbiased variance estimate for the opt-in group’s record probabilities

if mO = 1.
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Proof. See end-of-chapter Appendix 2.A.

Finally, the head list is passed to the client group, and the head list and its probability and

variance estimates are passed to the BlendProbabilities step of BLENDER. The choice of how

to split opt-in users into the sub-groups of S and T and the choice of M are unrelated to pri-

vacy constraints, and can be made by BLENDER’s implementer to optimize utility goals. This is

discussed further in Section 2.2.3.

Client Group Mechanisms for Head List Estimation The mechanism that each client user

executes locally is defined in Algorithm 2.4, and the results are reported back to BLENDER. Here,

records are no longer treated as a single entity, but rather in a two-stage process: first privatizing

the query, then privatizing the URL. This helps optimize utility in the setting where the number

of queries is significantly larger than the number of URLs associated with each query. To achieve

differential privacy in each stage, we design a new DP mechanism in order to utilize the head

list obtained from the opt-in group. This new DP mechanism is a two-fold generalization of the

basic Randomized Response mechanism (Section 1.1.2). Specifically, our mechanism first reports

the true query with a carefully calibrated probability, and otherwise reports a uniformly random

query from all the other queries in the head list. It then follows a similar procedure to privately

report the corresponding URL.

Lemma 2.2.4. LocalReport is (ϵ, δ)-differentially private.

Proof. Weprove this statement by proving that each iteration of the for loop in line 8 of LocalReport

is (ϵ′, δ′)-differentially private, where ϵ′ = ϵ/mC and δ′ = δ/mC . If this claim holds, then because

there are at most mC iterations of this loop for each client, the sequential composition property

of DP mechanisms (Section 1.1.1) guarantees that LocalReport ensures (ϵ, δ)-DP for each client.

Let L denote each iteration of the for loop in line 8 of LocalReport. L takes as input a

record ⟨q, u⟩ ∈ D, and returns a record L(⟨q, u⟩). If q is not in HL or u is not in HL[q], then they

immediately get transformed into a default value (⋆) that is in the head list. Since L outputs only
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Algorithm 2.4 LocalReport

Input
• mC : The maximum number of records to collect from the client.

• fC : The fraction of the privacy budget to allocate to reporting queries.

• HL: The head list, represented as a map keyed by queries {q1, . . . , qk, ⋆}. The value for each
q ∈ HL is defined as HL[q] = {u1, . . . , ul, ⋆}, representing all URLs in the head list associated

with q.

• ϵ, δ: The differential privacy parameters.

Body
1: Let DC,i be the database aggregating at mostmC records from current client i.
2: Let ϵ′ = ϵ/mC , and δ′ = δ/mC .

3: Let ϵ′Q = fCϵ
′, ϵ′U = ϵ′ − ϵ′Q and δ′Q = fCδ

′, δ′U = δ′ − δ′Q.

4: k = |HL|, and t =
exp(ϵ′Q)+(δ′Q/2)(k−1)

exp(ϵ′Q)+k−1 .

5: for each q ∈ HL do
6: Set kq = |HL[q]|, and tq =

exp(ϵ′U )+(δ′U/2)(kq−1)
exp(ϵ′U )+kq−1 .

7: end for
8: for each ⟨q, u⟩ ∈ DC,i do
9: if q ̸∈ HL then
10: Set q = ⋆.
11: end if
12: if u ̸∈ HL[q] then
13: Set u = ⋆.
14: end if
15: With probability (1− t),
16: Let q′ be a uniformly random query from HL \ q.
17: Let u′ be a uniformly random URL from HL[q′].
18: report ⟨q′, u′⟩.
19: continue
20: With probability (1− tq),
21: Let u′ be a uniformly random URL from HL[q] \ u.
22: report ⟨q, u′⟩.
23: continue
24: report ⟨q, u⟩.
25: end for
26: Return: HLS .
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values that exist in the head list, we need to prove that for any arbitrary neighboring datasets

⟨q, u⟩ and ⟨q′, u′⟩, Pr
[
L(⟨q, u⟩) ∈ Y

]
≤ eϵ

′
Pr
[
L(⟨q′, u′⟩) ∈ Y

]
+ δ′ holds for all sets of head list

records Y .

Whenever k = 1 or kq = 1, the only query (or URL for a specific query) is ⋆, which will be

output with probability 1. Thus, the DP constraint trivially holds, since the reported values then

do not rely on the client’s data. Therefore, we assume k ≥ 2 and kq ≥ 2. Because there is a single

decision point where it is determined whether q will be reported truthfully or not, we can split the

privacy analysis into two parts: 1) usage of the fC fraction of the privacy budget to report a query,

and 2) usage of the remainder of the privacy budget to report a URL (given the reported query).

This decomposes a simultaneous two-item (ϵ′, δ′) reporting problem into two single-item report-

ing problems with (ϵ′Q, δ
′
Q) and (ϵ

′
U , δ

′
U) respectively, where ϵ

′
Q = fϵ′, δ′Q = fδ′, ϵ′U = (1−fC)ϵ′,

and δ′U = (1− fC)δ
′
.

1. Privacy of query reporting: Consider the query reporting case first. Overloading our use of L,

let L(q) be the portion of L that makes use of q. We first ensure that

Pr[L(q) = qHL] ≤ exp(ϵ′Q) Pr[L(q
′) = qHL] +

δ′Q
2

(2.1)

holds for all q, q′, and qHL ∈ HL. This trivially holds when qHL = q = q′ or qHL ̸∈ {q, q′}. The

remaining scenarios to consider are: 1) q ̸= qHL, q
′ = qHL and 2) q = qHL, q

′ ̸= qHL. By the

design of the mechanism, Pr[L(qHL) = qHL] = t and Pr[L(q̄HL) = qHL] = (1− t)( 1
k−1), where q̄HL

represents any query not equal to qHL. With t =
exp(ϵ′Q)+(δ′Q/2)(k−1)

exp(ϵ′Q)+k−1 , it is straightforward to verify

that inequality (2.1) holds.
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Consider an arbitrary set of head list queries Y .

Pr[L(q) ∈ Y ] =
∑

qHL∈Y

Pr[L(q) = qHL]

=
∑

qHL∈Y \{q,q′}

Pr[L(q) = qHL] +
∑

qHL∈Y ∩{q,q′}

Pr[L(q) = qHL]

=
∑

qHL∈Y \{q,q′}

Pr[L(q′) = qHL] +
∑

qHL∈Y ∩{q,q′}

Pr[L(q) = qHL] (2.2)

≤
∑

qHL∈Y \{q,q′}

Pr[L(q′) = qHL] +
∑

qHL∈Y ∩{q,q′}

(
eϵ

′
Q Pr[L(q′) = qHL] +

δ′Q
2

)
(2.3)

≤ eϵ
′
Q

∑
qHL∈Y

Pr[L(q′) = qHL] + 2 ·
δ′Q
2

= eϵ
′
Q Pr[L(q′) ∈ Y ] + δ′Q,

Equality (2.2) stems from the fact that the probability of reporting a false query is independent

of the user’s true query. Inequality (2.3) is a direct application of inequality (2.1). Thus, L is

(ϵ′Q, δ
′
Q)-differentially private for query reporting.

2. Privacy of URL reporting: With tq defined as tq =
exp(ϵ′U )+(δ/2)′U (kq−1)

exp(ϵ′U )+kq−1 , an analogous argument

shows that the (ϵ′U , δ
′
U)-differential privacy constraints hold if the original q is kept. On the other

hand, if it is replaced with a random query, then they trivially hold as the mechanism reports

a random element in the URL list of the reported query, without taking into consideration the

client’s true URL u.

By the sequential composition property, each of the at mostmC iterations ofL is (ϵ′Q+ϵ′U , δ
′
Q+

δ′U) = (ϵ′, δ′)-differentially private.

The fact that the head list (approximating the set of the most frequent records) is available to

each client plays a crucial role in improving the utility of the data produced by this DPmechanism

compared to the previously known mechanism operating in the local model. This allows use of

the entire privacy budget to report the true value, rather than having to allocate some of it for

estimating an analogue of the head list, as done in Fanti et al. [FPE16b] and Qin et al. [Qin+16].
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The choices ofmC and fC are not related to privacy constraints, and can be chosen by BLENDER’s

implementer to optimize utility goals, as will be discussed in Section 2.2.3.

In the EstimateClientProbabilitiesmechanism of BLENDER, defined in Algorithm 2.5, all

client users’ local reports are aggregated and processed. Because EstimateClientProbabilities

only processes the clients’ reports (never their private data directly), this mechanism trivially sat-

isfies differential privacy by the post-processing property of DP. From a utility perspective, the

LocalReportmechanism (i.e., using a randomization procedure that can report any record with

some probability) induces a predictable bias to the distribution of reported records. To account

for this, EstimateClientProbabilities performs a debiasing procedure in order to compute

proper probability and variance estimates of the records.

Lemma 2.2.5. p̂C,⟨q,u⟩ is an unbiased estimate of the clients’ record probabilities.

Proof. See end-of-chapter Appendix 2.A.

Lemma 2.2.6. σ̂2
C,⟨q,u⟩ is an unbiased variance estimate of the clients’ record probabilities if

mC = 1.

Proof. See end-of-chapter Appendix 2.A.

The probability and variance estimates computed by EstimateClientProbabilities, p̂C

and σ̂2
C , are then passed to the BlendProbabilities stage of BLENDER.

Mechanism for Blending Estimates The blending portion of the BLENDER combines the in-

dependent estimates produced by the opt-in and client probability estimation mechanisms by

taking into account the sizes of the groups and the amount of random noise each group’s mech-

anism respectively added. This produces blended probability estimates p̂ which, in expectation,

are more accurate than either group produced individually. The procedure for blending is not

subject to privacy constraints, as it operates on the data whose privacy has already been ensured

by previous steps of BLENDER.
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Algorithm 2.5 EstimateClientProbabilities

Input
• C : The set of clients.

• mC : The maximum number of records to collect from each client.

• fC : The fraction of the clients’ privacy budget to allocate to queries.

• HL: A map from each query to its corresponding set of URLs.

• ϵ, δ: The differential privacy parameters.

Body
1: Append query q = ⋆ to HL.
2: for each query q ∈ HL do
3: Append URL u = ⋆ to HL[q].
4: end for
5: for each client i ∈ C do
6: LetDC,i = LocalReport(mC , fC ,HL, ϵ, δ) be the reports from client i’s local execution of

LocalReport.
7: end for
8: Let DC be the concatenation of all reported client datasets, DC,i.

9: Let |DC | denote the total number of records in DC .

10: Let variables ϵ′Q, ϵ
′
U , δ

′
Q, δ

′
U , k, t, kq, tq(∀q ∈ HL) be defined as in lines 2–4 of LocalReport.

11: Let r̂C , p̂C , σ̂
2
C be vectors indexed by records in HL (which, overloading its use, can also be

indexed by queries).

12: for q ∈ HL do
13: Let r̂C,q be the fraction of queries q in DC .

14: Set p̂C,q =
r̂C,q− 1−t

k−1

t− 1−t
k−1

.

15: Set σ̂2
C,q =

1(
t− 1−t

k−1

)2 r̂C,q(1−r̂C,q)

|DC |−1

16: for u ∈ HL[q] do
17: Let r̂C,⟨q,u⟩ be the fraction of records which are ⟨q, u⟩ in DC .

18: Set p̂C,⟨q,u⟩ =
r̂C,⟨q,u⟩−

(
t
1−tq
kq−1

p̂C,q+
1−t
k−1

1
kq

(1−p̂C,q)
)

t(tq− 1−tq
kq−1

)

19: Set

σ̂2
C,⟨q,u⟩ =

|DC |
t2
(
tq − 1−tq

kq−1

)2
(|DC | − 1)

·

( r̂C,⟨q,u⟩(1− r̂C,⟨q,u⟩)

|DC |
+

( 1− t

(k − 1)kq
− t

1− tq

kq − 1

)2
σ̂2
C,q + 2

( 1− t

(k − 1)kq
− t

1− tq

kq − 1

)( r̂C,⟨q,u⟩(1− r̂C,q)

|DC |(t− 1−t
k−1

)

))

20: end for
21: end for
22: Return: p̂C , σ̂2

C .
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Algorithm 2.6 BlendProbabilities

Input
• p̂O, p̂C : The probability estimates from the opt-in and client mechanisms.

• σ̂O, σ̂C : The variance estimates from the opt-in and client mechanisms.

• HL: The head list of records.

Body
1: Let p̂ be a vector indexed by records in HL.
2: for ⟨q, u⟩ ∈ HL do

3: w⟨q,u⟩ =
σ̂2
C,⟨q,u⟩

σ̂2
O,⟨q,u⟩+σ̂2

C,⟨q,u⟩
.

4: p̂⟨q,u⟩ = w⟨q,u⟩ · p̂O,⟨q,u⟩ + (1− w⟨q,u⟩) · p̂C,⟨q,u⟩.
5: end for
6: Project p̂ onto probability simplex (e.g., see [WCP13]).

7: Return: p̂.

The motivation for this BlendProbabilities mechanism is born from the question of how

to best combine the independent estimates of both groups. A standard measure of an estimator’s

quality is its variance. Although it may seem natural to choose the estimate with lower variance

as the final estimate p̂, it is possible to compute a better estimate by jointly utilizing the informa-

tion provided by both estimates. This is because the errors in these estimates come from different

sources. The error in the estimates obtained from EstimateOptinProbabilities stems from

the Laplace mechanism applied to a small number of users’ data, whereas the error in the es-

timates obtained from EstimateClientProbabilities stems from our generalization of the

Randomized Response mechanism applied to almost all of the users. In the following theorem,

we create a joint estimate that accounts for these different sources and scales of error.

Theorem 2.2.7. If σ̂2
O,⟨q,u⟩ and σ̂2

C,⟨q,u⟩ are sample variances of p̂O,⟨q,u⟩ and p̂C,⟨q,u⟩ respectively,

and the blended estimate is the convex combination p̂⟨q,u⟩ = w⟨q,u⟩ · p̂O,⟨q,u⟩+(1−w⟨q,u⟩) · p̂C,⟨q,u⟩,

then the sample variance optimal weighting is given by w⟨q,u⟩ =
σ̂2
C,⟨q,u⟩

σ̂2
O,⟨q,u⟩+σ̂2

C,⟨q,u⟩
.

Proof. Let the unbiased probability and variance estimates for each group’s records be computed

as in Lemmas 2.2.3, 2.2.5, and 2.2.6. The unbiased blended estimate of p⟨q,u⟩ is then defined as the

convex combination of both groups’ estimates: p̂⟨q,u⟩ = w⟨q,u⟩ · p̂O,⟨q,u⟩+(1−w⟨q,u⟩) · p̂C,⟨q,u⟩. The
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sample variance of p̂⟨q,u⟩ is given by σ̂2
⟨q,u⟩ = w2

⟨q,u⟩ · σ̂2
O,⟨q,u⟩ + (1− w⟨q,u⟩)2 · σ̂2

C,⟨q,u⟩.Minimizing

σ̂2
⟨q,u⟩ with respect to w⟨q,u⟩ yields the stated result.

With all sub-mechanisms of BLENDER fully defined, and with their differential privacy guar-

antees proven, we conclude by stating BLENDER’s formal DP guarantee.

Theorem 2.2.8. BLENDER satisfies (ϵ, δ)-DP for all users.

Proof. LetO be the full set of opt-in users, andC be the full set of clients. Let S, T be the partition

of opt-in users such that the users in S are assigned to the DiscoverHeadList sub-mechanism,

and the users in T are assigned to the EstimateOptinProbabilities sub-mechanism. Because

both sub-mechanisms satisfy (ϵ, δ)-DP for their respective disjoint subsets of users (Lemmas 2.2.1

and 2.2.2) and those users’ raw data are never subsequently processed, by parallel composition

(Section 1.1.1) we conclude that BLENDER ensures (ϵ, δ)-DP for the opt-in usersO. Similarly, each

client’s local execution of LocalReport satisfies (ϵ, δ)-DP (Lemma 2.2.4). Since the clients’ raw

data are never subsequently processed, we conclude that BLENDER ensures (ϵ, δ)-DP for all clients

C . Taken together, the privacy guarantees for both groups imply that BLENDER satisfies (ϵ, δ)-DP

for all users.

2.2.2 Measuring Utility

The practical measures of utility that we consider for head list estimationmechanisms in any trust

model are ℓ1 error (smaller is better) as well as the industry-standard NDCG (larger is better). For

both measures, rather than theoretically analyzing BLENDER’s (or any other DP mechanism’s)

worst-case utility, we evaluate utility experimentally using real-world search log datasets. We

briefly describe both utility measures here, as well as the baseline mechanisms that we use to

contextualize BLENDER’s utility.

ℓ1 Error: The ℓ1 error is the Manhattan distance between the estimated and true probability

vectors; i.e.,

∑
q |p̂q − pq|.We use this metric to specifically evaluate howwell BLENDER estimates
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the probabilities of queries (rather than entire records) in the head list. For any query q not in

BLENDER’s estimated head list, we assume that BLENDER implicitly estimates its probability as

p̂q = 0.

NDCG: NDCG is a standard measure of search quality [JK02; Val+09] that takes into account

the order of queries by performing discounting. In particular, most popular queries at the head

of the search have a higher weight, whereas the relative significance of the less popular queries

is reduced. The relevance, or gain, of an item at position i in the ranked list is measured using a

graded relevance score defined as rel i =
ni∑
j nj

,where nj is the number of occurrences of the item

in position j in the given dataset. The closer i’s estimated rank is to its true rank, the larger the

gain. For a head of k top elements, the estimated rank list is computed asDCGk =
∑k

i=1
2reli−1
log2(i+1)

.

Here, the discounting happens because of the log2(i) factor that diminishes the effect of later

queries. This value is normalized by the Ideal DCG (IDCGk), in which the estimated and the

actual ranking are exactly the same, to obtain a value that ranges between 0 and 1.

Since we operate on records rather than just queries, we utilize a generalization of the tradi-

tional NDCG. Here, we compute the NDCG of each query’s URL list, NDCGq
, as specified above,

and then compute the DCG of the queries as DCGQ
k =

∑k
i=1

2reli−1
log2(i+1)

· NDCG i.

The final NDCG computation is thenDCGQ
k normalized by the analogous Ideal DCG (IDCGQ

k ).

In a way, our computation considers an NDCG of NDCGs, which makes it even harder for mech-

anisms to maintain consistently high NDCG values when compared to the query-only case. This

formulation takes the true ranking and frequencies from the dataset into account, not the fre-

quency estimates that BLENDER outputs. Since changes to the true frequencies may not result in

ranking changes, ℓ1 error is an even less forgiving measure than NDCG.

Since the purpose of BLENDER is to estimate probabilities of the top records, we discard the ar-

tificially added ⋆ queries and URLs and rescale reli prior to ℓ1 and NDCG computations. However,

since we use the probability projection method [WCP13] in BlendProbabilities, the probabil-

ity estimates involving ⋆ have a minor implicit effect on the ℓ1 error and NDCG.
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AOL Yandex

Dataset on disk 1.75 GB 16 GB

Unique queries 4,811,646 13,171,961

Unique clients 519,371 4,970,073

Unique URLs 1,620,064 12,702,350

Table 2.1: Search log dataset statistics.

Baseline Mechanisms: To put the utility of the BLENDER mechanism into context, we use

the following baseline mechanisms (previously described in Section 2.2) in each of the clas-

sic trust models. For the TCM baseline, we adapt Korolova’s mechanism [Kor12] to the task

of head list discovery and estimation applied only to the TCM users. Since the opt-in group’s

DiscoverHeadList and EstimateOptinProbabilitiesmechanismswere based on this adapted

mechanism, the results of this baseline are equivalent to if BLENDER had no client group. For the

LM baseline, we utilize Qin et al.’s mechanism [Qin+16] applied to all individuals.

2.2.3 Evaluating BLENDER

With BLENDER defined, we perform a comprehensive empirical evaluation in order to quantify

its utility, finding that BLENDER is able to achieve practically useful levels of utility. We precede

BLENDER’s empirical evaluation with an example analysis to concretely illustrate how its com-

ponents function individually and together. We then describe the parameter choices that must

be made and justify how we choose them. Finally, we describe the various experiments that we

perform on BLENDER and detail their results.

The datasets that we use for all experiments are the AOL search logs released in 2006 and the

Yandex search dataset
5
released in 2013. Table 2.1 describes their characteristics.

5https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data
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AOL BLENDER Opt-in Client Client
Query dataset estimate estimate estimate estimate

pq p̂q
∑

u p̂O,⟨q,u⟩ p̂C,q

∑
u p̂C,⟨q,u⟩

⋆ 0.9121 0.9144 0.9148 0.9143 0.9143

google 0.0211 0.0211 0.0220 0.0210 0.0210

yahoo 0.0067 0.0081 0.0061 0.0088 0.0088

google.com 0.0066 0.0075 0.0083 0.0073 0.0073

myspace.com 0.0055 0.0046 0.0034 0.0052 0.0052

mapquest 0.0055 0.0062 0.0051 0.0066 0.0066
yahoo.com 0.0048 0.0047 0.0057 0.0043 0.0043

www.google.com 0.0044 0.0038 0.0043 0.0035 0.0035

myspace 0.0034 0.0030 0.0031 0.0030 0.0030

ebay 0.0030 0.0030 0.0030 0.0029 0.0029

Table 2.2: Comparison of probability estimates for top-10 most popular AOL queries. Parameter

choices are shown in Table 2.3, with ϵ = 3 here.

2.2.3.1 Illustrative Analysis

To illustrate the approachwe take for assessing result quality, Table 2.2 shows the top-10most fre-

quent queries in the AOL dataset alongside the probability estimates given by BLENDER’s various

sub-mechanisms.

The table is sorted by column 2, which contains the non-private, empirical probabilities from

the AOL dataset with 1 random record sampled from each user. Column 3 contains the final query

probability estimates output by BLENDER. Each sub-mechanism computes probability estimates

over the records in the head list. To obtain query probability estimates from these record estimates,

we simply aggregate the probabilities associated with each URL for a given query (columns 4 and

6). The sample variance of each aggregated probability, used for blending, is naively computed

as in Theorem 2.2.3. Column 5 is the EstimateClientProbabilities’ estimate of the query

probabilities, which it directly computes. Column 6 contains the same information, but is com-

puted by aggregating the estimated probabilities of EstimateClientProbabilities’ records

corresponding to a specific query. BLENDER uses columns 4, 5, and 6 when it comes to blending

the records. Regressions — i.e., estimates that appear out of order relative to column 2 — are

shown in red.
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The biggest takeaway is that the numbers in columns 2 and 3 are similar to each other, with

BLENDER’s usage resulting in only one regression. This is an example of BLENDER compensating

for the weaknesses of the opt-in and the client estimates. Specifically, despite the opt-in group

having several regressions in this particular instance, combining the opt-in and client data com-

pensates for that, resulting in only one regression.

2.2.3.2 Parameter Choices

BLENDER has a handful of parameters, some of which can be viewed as given externally (e.g, by

business interests, legal requirements, etc.), and others whose choice is purely up to the entity

deploying BLENDER. We now describe and motivate our choices for these parameters’ values.

Privacy parameters (ϵ, δ). We view ϵ and δ as externally given privacy parameters (e.g., by

what is a common practice for differentially private mechanisms in the industry [Tan+17; Tea17;

EPK14]). We use a δ that is larger for the AOL dataset than for the Yandex dataset to reflect that

the Yandex dataset contains data of more users. However, we ensure that for a fixed dataset, we

use the same ϵ and δ values for the opt-in and client users. From a behavioral perspective, this

reduces a user’s opt-in decision down to one purely of trust towards the curator.

Opt-in and client group sizes (|O|, |C|). The relative sizes of the opt-in and client groups, |O| and

|C| respectively, can be viewed as exogenous variables which are dictated by the trust that users

place in the search engine
6
. We choose 5% for AOL and 3% for Yandex for the fraction of opt-in

users because they are both reasonably small while still allowing us to effectively demonstrate

BLENDER’s utility benefits.

6
In the future, as differential privacy gains widespread adoption, it is conceivable that the values of the privacy

parameters may affect their relative sizes; for example, the smaller the ϵ, the more users are willing to “opt in".

However, this relationship is out of the scope of this work.
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Number of records to collect from each opt-in user (mO = 1). This is a choice necessitated by the

privacy constraints of the DiscoverHeadList mechanism.

The choices for remaining the parameters, mC , fC , fO, and M , are driven purely by utility con-

siderations.

Number of records to collect from each client (mC = 1). Across a range of experimental values,

we found that collecting 1 record per user always yielded the greatest utility, thus justifying this

parameter choice. Two factors account for this. The first factor is that the privacy budget must

be split across a client’s reports, reducing each individual report’s utility. The second factor is

that the variance estimates used in the blending stage assume that reports are uncorrelated —

this assumption likely does not hold in practice within a given user’s set of records.

Privacy budget split for clients (fC = 0.85). Figure 2.3 shows the effects of the budget split on

both the ℓ1 and NDCGmetrics. Unsurprisingly, Figure 2.3a shows that the larger a client’s privacy

budget fraction dedicated to query estimation is (as opposed to URL estimation), the better the

ℓ1 error for the client and BLENDER results. The NDCG metric in Figure 2.3b shows a trade-

off that emerges as we assign more budget to the queries, de-emphasizing the URLs. The client

mechanism’s NDCG value peaks at a budget split of 0.85; choosing a split above this point induces

a significant drop in the blended NDCG values. Note that the grey opt-in line in Figure 2.3b is

constant, as the opt-in group is not affected by the client group’s budget split.

Fraction of opt-in data dedicated to head list discovery (fO = 0.95). We choose fO = 0.95 because

our goal is to build a large candidate head list. Unless we allocate most of the opt-in user data

to building such a head list, BLENDER’s subsequent results may be accurate, but they will apply

only to a small number of records. In order for BLENDER to be effective for the local search

application in practice, it needs to amass a head list of at least double or triple digits in size. Even

without looking at experimental data, this choice makes intuitive sense: the opt-in group size is
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Figure 2.3: Comparing AOL dataset results across a range of budget splits for client, opt-in, and

blended results.

small relative to the client group size, and it is difficult to generate a head list in the clients’ local

privacy model — thus, it makes sense to utilize most of the opt-in group’s data for the task that

is most difficult in the LM.

Final head list size (M). The choice ofM is influenced by competing considerations. The larger

the head list for which BLENDER provides probability estimates, the more effective the local search

application (subject to those probability estimates being accurate). However, as the desired head

list size increases, the accuracy of BLENDER’s estimates drops (most notably due to client data

privatization). We want to strike a balance that allows BLENDER to get a sensibly large record set

with reasonably accurate probability estimates for it. We choose M = 50 and M = 500 for the

AOL and Yandex datasets, to reflect their respective size differences.

Subsequently, we use the parameters shown in Table 2.3 in all experiments unless explicitly stated

otherwise.

2.2.3.3 Utility Comparison Against Baseline Mechanisms

We now evaluate BLENDER’s utility compared to the baseline mechanisms in both classic trust

models.
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Parameter AOL Yandex
ϵ 4 4

δ 10−5 10−7
|O|

|O|+|C| 5% 3%

mO 1 1

mC 1 1

fO 0.95 0.95

fC 0.85 0.85

M 50 500

Table 2.3: Default parameters used in BLENDER experiments.

As previously described in Section 2.2.2, the baseline mechanisms that we use in the TCM

and LM are that of Korolova [Kor12] and Qin et al. [Qin+16] respectively. Qin et al. evaluates

the NDCG of their state-of-the-art mechanism on the AOL dataset for the head list size of 10

across a range of ϵ values. Thus, we evaluate the NDCG of BLENDER and of our adapted variant

of Korolova’s mechanism on the same head list size and ϵ values. The outcome of this comparison

is displayed in Figure 2.4. Across the full range of the ϵ privacy parameter considered, BLENDER

achieves NDCG values above 95%. The TCM baseline performs fairly well, exceeding 95% be-

ginning at ϵ = 4. However, the LM baseline mechanism only attains NDCG values of 30% at its

peak. We believe that given the intense focus on search optimization in the field of information

retrieval, NDCG values as low as those of Qin et al. are generally unusable in practice. Overall,

and particularly at the higher levels of privacy (ϵ ≤ 3), BLENDER significantly outperforms the

closest related state-of-the-art mechanisms.

We do provide one remark on the difference in utility computation between our work and

that of Qin et al.; specifically, we use a slightly different scoring function in our NDCG compu-

tation. Qin et al. use a relevance score based purely on the rank of queries in the original AOL

dataset. This results in penalizing misranked queries regardless of their underlying probabilities.

BLENDER’s relevance score only relies on the underlying probabilities, so misranked items with

similar underlying probabilities only have a small negative impact on the overall NDCG score.

We believe this is a more natural scoring method, thus justifying our choice. Although this choice
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Figure 2.4: Comparing BLENDER’s utility to TCM and LM baseline mechanisms across a range of

ϵ values at a head list size of 10.

yields a slightly increased NDCG, this increase is outweighed by the fact that BLENDER operates

on records (rather than queries, as in Qin et al.). Because of this, the “NDCG of NDCGs” score

(Section 2.2.2) used to evaluate BLENDER is a strictly less forgiving metric than the traditional

NDCG score. Thus, although simultaneously compensating for both differences would yield the

ideal comparison, the comparison in Figure 2.4 is reasonable.

2.2.3.4 Evaluating How Parameter Choices Affect Utility

We now evaluate how BLENDER’s utility is affected by the various parameter choices — primarily,

the size of the opt-in group and the ϵ privacy parameter. We first evaluate BLENDER’s utility for

the simpler problem of discovering and estimating the top queries using the ℓ1 error metric. We

then evaluate BLENDER’s utility on the more challenging problem of discovering and estimating

the top queries and URLs using NDCG. Next, we analyze how each group of users contributes to

BLENDER’s final utility. Finally, we examine how BLENDER’s utility is affected when the opt-in

group is extremely small.
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Figure 2.5: BLENDER’s ℓ1 error as a function of the opt-in percentage.

ℓ1 evaluation of BLENDER’s utility. Evaluating BLENDER’s ℓ1 error on theAOL and Yandex datasets,

Figure 2.5
7
shows the results across opt-in user percentages ranging between 1% and 10%

8
.

We observe slight differences in the two datasets and across the various head list sizes. Some

differences may be due to the fact that given the relatively small size of the AOL dataset, BLENDER

needs a higher percentage of opt-in users to achieve reasonably sized head lists and ℓ1 error

values. In fact, when we increase the opt-in percentage to 10% for the AOL dataset, we see a

slight decline in ℓ1 error for the largest head list size similar to what is observed in Figure 2.5b

for the Yandex dataset. If the goal is to have head lists of size 500+, we see that with the larger

Yandex dataset, an opt-in percentage as small as 3% is sufficient. The main takeaway from this

is that when the opt-in group is large enough to attain the desired head list size, the estimated

query probabilities will generally be high quality in terms of their ℓ1 error.

Figure 2.6 shows BLENDER’s ℓ1 error as a function of ϵ, ranging from 1 to 6. For both datasets,

BLENDER’s ℓ1 error steadily declines, achieving values under 0.01 for all but the smallest ϵ values

and largest head list sizes.

7
Portions of lines do not appear on figures if the desired head list size was not reached (e.g., in Figure 2.5a, the

line representing results for a head list of size 50 does not begin until 5% because a head list of size 50 could not be

generated with a lower opt-in percentage).

8
We believe that requiring opt-in percentages in excess of 10% is likely to put undue strain on the system in terms

of recruitment; simply put, finding enough opt-in users may prove difficult or impossible in the long run.
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(b) Yandex

Figure 2.6: BLENDER’s ℓ1 error on the AOL and Yandex datasets at various head list sizes across a

range of ϵ values.
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Figure 2.7: BLENDER’s NDCG as a function of the opt-in percentage.

NDCG evaluation of BLENDER’s utility. We now measure BLENDER’s NDCG as a function of the

opt-in percentage ranging between 1% and 10%. Figure 2.7 shows the corresponding results.

Despite query/URL record estimation being a more challenging problem than query estima-

tion alone, the results here are quite encouraging. For the smaller AOL dataset, BLENDER achieves

an NDCG in excess of 95% when the percentage of users in the opt-in group is at least 5%, which

we regard as acceptable. However, for the larger Yandex dataset, BLENDER achieves that same

NDCG level significantly sooner. For an opt-in group composed of only 1% of the total users,

BLENDER’s NDCG is above 95% for all but the largest head list size.
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Figure 2.8: BLENDER’s NDCG on the AOL and Yandex datasets at various head list sizes across a

range of ϵ values.

Figure 2.8 shows BLENDER’s NDCG on both datasets at various head list sizes and across a

range of ϵ values. There is a clear trend toward higher NDCG values for Yandex, which is not

surprising given the sheer volume of data. For the Yandex dataset, even with ϵ as low as 1,

BLENDER still achieves NDCG values of 95% and above for all but the two largest head list sizes.

For those two desired head list sizes, BLENDER necessitates a larger ϵ in order to discover the full

head list from the opt-in users.

Each group’s effect on BLENDER’s final result. Thus far, we have determined that BLENDER is

capable of achieving high-utility results. However, it is unclear how each group’s estimates are

contributing to BLENDER’s final result. Specifically, we now address the question of whether the

small number of samples with low noise from the opt-in group dominates (or is dominated by)

the large number of samples with high noise from the client group.

Targeting a head list of size 100 on the Yandex dataset, we examine this question in Figure 2.9

for a range of opt-in percentages and ϵ values. These graphs show a complex relationship between

the two groups’ utility with regards to the final blended result. In all cases, the blended result is

better than the worse of either the opt-in or client results. With regards to ℓ1 error, the blended

result is better than both groups’ individual results when varying either the opt-in user percentage

or the ϵ value.
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Figure 2.9: BLENDER’s ℓ1 error and NDCG results broken out between the different groups’ results

on the Yandex dataset with head list size 100 across a range of opt-in percentages (a,b) and a range

of ϵ values at 3% opt-in (c,d).
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When increasing the opt-in user percentage, the two groups’ results behave as expected; the

opt-in group’s results improve as it gainsmore users, and the client group’s results gradually dete-

riorate as it loses users. Interestingly, Figures 2.9a and b show that the ℓ1 error of the client group’s

query estimates deteriorate quite slowly as their group size decreases, whereas their NDCG re-

sults deteriorate more quickly. To understand this behavior, first observe that there are signifi-

cantly fewer queries (of which ℓ1 measures the utility) than there are query/URL pairs (of which

NDCG measures the utility). Also note that the utility of the generalized Randomized Response

component of LocalReport degrades as the set of items under consideration increases. Taken

together, these two facts explain the difference in the deterioration rates of the client group’s

utility between Figure 2.9a and b.

The NDCG of the blended result mainly tracks the NDCG of the opt-in group’s results even in

the case where the client result is clearly better (from 1% up to 3%). This would support the idea

that the opt-in estimates may be dominating the client estimates during the blending process.

However, this trend does not appear to hold when increasing ϵ, as the blended estimate’s utility

rapidly improves alongside the client estimate’s utility, while the opt-in estimate’s utility remains

relatively flat. Interestingly, as ϵ is increased, the opt-in estimate’s ℓ1 error remains relatively

constant and its NDCG only slightly improves. This is caused by the large amount of noise

that is inherent in the opt-in group due to its relatively small size; i.e., a 3% sized opt-in group

induces a certain level of sampling error such that the noise introduced for privacy is negligible

by comparison.

The takeaway is that there is no single group that clearly dominates in its contribution to the

final blended result. In fact, both groups appear to contribute across the ranges of parameters

considered.

Utility impact of a tiny opt-in group. In the real world, it may be the case that a 5% or even

a 3% sized opt-in group is still too large to be considered feasible. As mentioned in the above

evaluation of query discovery and estimation, BLENDER’s utility is generally high conditioned on
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Figure 2.10: BLENDER’s ℓ1 error and NDCG on the Yandex dataset at various head list sizes across

a range of tiny opt-in percentages.

the desired head list size being achieved. When the opt-in group becomes too small, it becomes a

significantly greater challenge for BLENDER to achieve large head list sizes. For the head list sizes

that BLENDER can achieve at smaller opt-in percentages, what sort of utility results can we expect

from BLENDER? We answer this question here.

Figure 2.10 shows BLENDER’s utility on the Yandex dataset targeting smaller head list sizes

across a range of opt-in group sizes from 0.1% up to 1%. These results confirm our previous

conclusion that once BLENDER can attain a particular head list, it becomes fairly easy for BLENDER

to achieve high utility probability estimates.

At these tiny opt-in percentages, with 95% of the opt-in group being assigned to head list

discovery, only 0.005% to 0.05% of the users’ data are used to estimate the probabilities under the

TCM. In this setting, one may question the extent to which the opt-in users are contributing to

the high-utility blended results. Figure 2.11 shows the ℓ1 error and NDCG values for the opt-in

group’s results, the client group’s, and the final blended results across these tiny opt-in sizes for a

head list of size 10 on the Yandex dataset. As suspected, the estimates from the opt-in group have

much lower utility relative to the client group. BLENDER’s blending stage is able to automatically

take advantage of the opt-in group’s high variance results (stemming from the tiny number of

samples provided by this group to estimate the record probabilities) and weigh the blendingmuch

more heavily towards the client group’s results.
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Figure 2.11: BLENDER’s ℓ1 error and NDCG statistics broken out per group on the Yandex dataset

at head list size 10 across a range of tiny opt-in percentages.

2.3 Mean Estimation

In the prior section on heavy hitter discovery and estimation, we gained invaluable insights into

the hybrid model. However, the complexity of both the problem (having two stages, first dis-

covering the heavy hitters and then estimating their frequencies) as well as the primary utility

metric (NDCG) necessitated a fully empirical analysis of our designed hybrid mechanism. We

gain deeper insights into the power of the hybrid model by analytically studying the more fo-

cused problem of mean estimation. Inspired by the frequency estimation portion of the heavy

hitter problem, the central problem that we consider in this section of the thesis is:

How can we design a high utility hybrid mechanism for the problem of

mean estimation?

Estimating themean µ of a distributionD from a dataset is a foundational problem in statistics

that has been considered in a variety of different settings. The particular setting that we study

is: estimating the mean µ of a distribution D with bounded support [0,m] from a dataset D of

n users, where each point xi in the dataset is the data of a single user drawn i.i.d. from D. This

setting is well studied in statistics and in the DP literature, due to its prevalence as a fundamental

building block in solutions to more complex tasks. As a result, a large number of DP mechanisms
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in both the TCM and LM have been designed to address this problem [Dwo+06b; Dwo+06a;

GRS12; CKS20], including two of the most widely used mechanisms in practice which we have

already introduced in Section 1.1.2: the Laplace and Gaussian mechanisms.

Hybrid Model Mean Estimation

We extend this foundational mean estimation problem into the hybrid setting, taking into con-

sideration that users’ different trust model preferences may be correlated with their underlying

behavior. Such correlation would violate the above assumption that all users’ data are drawn

i.i.d. from D. To accommodate this potential distributional difference between the two groups,

we generalize the mean estimation problem as follows:

Let c be the fraction of users who opted in to the TCM, and letDT andDL be the distributions

that the TCM and LM users’ data are drawn i.i.d. from, respectively. The input dataset is then

decomposed as D = DT ∪DL, where DT is the data of the cn TCM users drawn i.i.d. from DT ,

and DL is the data of the (1 − c)n LM users drawn i.i.d. from DL. We seek to estimate the joint

mean of the two groups; i.e., the mean of their mixture distribution D = cDT + (1 − c)DL
9
.

This hybrid mean setting is illustrated in Figure 2.12. Thus, the differentially private mechanisms

that we design and analyze in this section are statistical estimators, and we refer to them as such

throughout the remainder of the section.

Because this section is notationally dense, Table 2.4 serves as a reference table for the various

symbols that we define.

Our Contributions

We initiate our study of the mean estimation problem under the hybrid model by concretely

defining how we measure utility. Along with this, we define baseline estimators in the TCM

and LM, and analytically characterize their utilities in order to subsequently contextualize the

9
This generalization reduces to the basic mean estimation problem when the two groups have the same under-

lying distribution (DT = DL).

52



Symbol Usage

ϵ, δ Differential privacy parameters.

n Total number of users.

c Fraction of users who opt in to TCM.

T, L Set of users who opted in to TCM and set of users who are using LM, respec-

tively.

D Mixture distribution of both groups’ data.

µ, σ2,m Mean, variance, and maximum support of D.
DT Distribution of TCM groups’ data.

µT , σ
2
T ,mT Mean, variance, and maximum support of DT .

DL Distribution of LM groups’ data.

µL, σ
2
L,mL Mean, variance, and maximum support of DL.

xi User i’s private data drawn i.i.d. from its group’s distribution.

µ̂, µ̂T , µ̂L Empirical mean estimates with all users, with only the TCM users, and with

only the LM users, respectively.

E MSE of an estimator with respect to µ̂.
µ̃T , ET TCM-Only estimator and its MSE.

µ̃F , EF Full-LM estimator and its MSE.

µ̃L, EL LM-Only estimator and its MSE.

µ̃H(w), EH(w) Hybrid estimator with weight w and its MSE.

YT , s
2
T TCM-Only estimator’s privacy random variable and its variance.

YL,i, s
2
L User i’s local privacy random variable and its variance.

ncrit, ccrit n and c values that partition where ET ≤ EF .
R(E), r(E) Relative improvement of estimator with MSE E over the best and worst non-

hybrid baselines, respectively.

Table 2.4: Comprehensive list of notation for mean estimation in the hybrid model.
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Figure 2.12: Overview of the mean estimation problem through the lens of our hybrid differential

privacy model.

utility of any hybrid estimator. We then define a family of hybrid estimators based not on a

specialization-based approach like with BLENDER, but rather by utilizing a direct-combination

approach (Section 2.1). Specifically, estimators in this family independently compute private es-

timates from the TCM and LM groups, and then straightforwardly combine them in a weighted

manner.

Analyzing the hybrid estimator family enables us to address the questions posed in Section 2.1,

particularly on understanding the utility of hybrid mechanisms as well as on how properties

of the two groups of users affect hybrid mechanisms’ privacy and utility. In this analysis, we

first analytically determine the utility of the hybrid estimators, and compare it against baseline

estimators in the classic trust models. We then quantify how the hybrid estimators’ utilities are

affected when the two groups’ data are drawn from different distributions. Finally, we analyze

how a mechanism’s privacy and utility are impacted by the manner in which the groups of users

interact.
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For our first contribution, by deriving and analyzing concrete estimators from the hybrid es-

timator family, we determine that the hybrid estimator family can attain high utility. We achieve

this by deriving specific estimators from our hybrid family in two statistical settings: when the

two groups’ data are drawn from the same distribution D and its variance is known to the esti-

mator, and when the two groups’ data are drawn from the same distribution but its variance is

not known to the estimator. We refer to the setting where the two groups’ data are drawn from

the same distribution as the homogeneous setting.

• Homogeneous, known-variance: We utilize the knowledge of the variance to derive a hy-

brid estimator that achieves an optimal MSE, and refer to the corresponding estimator as

the known-variance hybrid estimator. Computing the known-variance hybrid estimator’s

relative improvement against the baseline estimators, we find that it provably outperforms

both baseline estimators simultaneously in all parameter regimes. Moreover, we bound this

estimator’s maximum relative improvement in realistic parameter regimes and find that its

improvement peaks at a factor of approximately 2.3x over the best baseline.

• Homogeneous, unknown-variance: We derive a hybrid estimator that heuristically attempts

to minimize the MSE, and refer to the corresponding estimator as the unknown-variance

hybrid estimator. Computing the unknown-variance hybrid estimator’s relative improve-

ment against the baseline estimators, we find that it outperforms both baseline estimators

simultaneously in some parameter regimes, and we analytically characterize these parame-

ter regimes. In the parameter regimes where the unknown-variance hybrid estimator does

not outperform both simultaneously, we show that it always outperforms one of the base-

lines. Moreover, we find that it often achieves utility comparable to the known-variance

hybrid estimator in realistic parameter regimes.

We additionally evaluate both hybrid estimators’ utilities in practice by simulating them on re-

alistic distributions and parameters, finding that they both typically achieve a constant factor

improvement over the baselines.
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Deriving analytical utility results enables us to rigorously address the question of how the

hybrid estimators’ utilities are affected when users’ data are drawn from distributions dependent

on their trust model preference. We refer to this as the heterogeneous setting. The derived utility

expressions reveal that the means and variances are the only aspects of the TCM and LM groups’

distributions that affect the utility of both the hybrid and baseline estimators. Thus, to examine

the utility impact of the two groups’ distributions diverging, we separately consider the scenarios

where the means diverge and where the variances diverge. We find that when the distributions’

means diverge, our hybrid estimators become increasingly biased, and utility drops sharply rel-

ative to the best baseline. However, when the distributions’ variances diverge, we find that our

hybrid estimators maintain high utility. This implies that in practice, if the underlying means of

the two groups are expected to be approximately the same, but their behavior is otherwise dif-

ferent (manifesting as different variances), then we can expect our hybrid estimators to achieve

high utility.

Finally, we demonstrate how hybrid DP mechanisms can be designed from non-hybrid DP

mechanisms by using our hybrid estimators as a drop-in mean estimation primitive. To ac-

complish this, we convert a classic DP mechanism for the K-means problem in the TCM into

a mechanism in the hybrid model by using our hybrid estimator. We then empirically evaluate

the effectiveness of this new hybrid mechanism, finding that it achieves high utility.

2.3.1 Measuring Utility

We initiate our study of mean estimation in the hybrid model by defining, from an absolute

perspective, how we measure the utility of any estimator. We then define what the baseline

estimators are in the classic trust models which we use to contextualize the utility of hybrid

estimators that we design. For both baseline estimators, we analytically characterize their utility.

Finally, we specify how we concretely measure a hybrid estimator’s utility against the baseline

estimators.
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2.3.1.1 Absolute Measure of Utility

Our goal is to design accurate estimators of the mean µ of the mixture distribution D. For mea-

suring utility of any private estimator, we use the non-private empirical mean estimator as a

benchmark.

Definition 2.3.1. The non-private empirical mean estimator is:

µ̂ =
1

n

∑
i∈[n]

xi = cµ̂T + (1− c)µ̂L.

Comparing a private estimator against the non-private empirical estimator in this way reflects

our interest in the excess error introduced by the privatization scheme, beyond the inherent error

induced by a finite sample size [Dwo+06b; Dwo+06a; GRS12; BW18; CKS20].

To concretelymeasure the utility of any privatemean estimator µ̃ in the classic trust models or

the hybrid trust model, we measure its error with respect to the non-private empirical benchmark

estimator in terms of its mean squared error (MSE).

Definition 2.3.2. The MSE between a private estimator µ̃ and the non-private empirical mean

µ̂ is:

E = MSE(µ̃, µ̂) = E[(µ̃− µ̂)2].

For brevity, since the non-private empirical benchmark estimator is used to measure the MSEs of

all private estimators in this section, we simply refer to it as the MSE of the private estimator.

2.3.1.2 Baseline Estimators

We now motivate how we design all private estimators, including the baseline estimators. We

then formally define baseline estimators in the TCM and LM. For each baseline estimator, we

analytically characterize its utility against the non-private empirical benchmark estimator.
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To design any private estimator, hybrid or otherwise, we leverage the broad and powerful

class of “additive noise mechanisms” (Section 1.1.2). In the classic trust models, the state-of-the-

art mechanisms for DP mean estimation fall under this class. Additive noise mechanisms ensure

DP for real-valued functions by adding randomness directly to the function’s output, where the

randomness is drawn from a carefully constructed distribution (typically with mean 0). For mean

estimation across a variety of distributional settings in both the TCM and LM, several specific

additive noise mechanisms have been proven optimal or near-optimal. Examples include the

Geometric mechanism [GRS12], the Staircase mechanism [KOV14; GV15], and the Truncated

Laplacian mechanism [Gen+20]. The class of additive noise mechanisms also includes the most

widely used mechanisms for the basic mean estimation problem: the Laplace and Gaussian mech-

anisms [Dwo+06b; Dwo+06a]. Despite these two mechanisms’ sub-optimality, their widespread

use stems from their simplicity and generality in conjunction with their high utility in practical

settings.

To contextualize the utility of any hybrid estimator, we first utilize this class to generically

define baseline estimators in the classic trust models. The TCM baseline estimator, applied only

to the TCM users, is referred to as the TCM-Only estimator. It is formally defined as follows.

Definition 2.3.3. The TCM-Only estimator is:

µ̃T =
1

cn

∑
i∈T

xi + YT ,

where YT is a random variable with 0 mean and s2T variance chosen such that DP is satisfied for

all TCM users.

Lemma 2.3.4. µ̃T has MSE:

ET =
(1− c)2

cn
σ2
T +

1− c

n
σ2
L + s2T + (µT − µ)2.
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Proof.

ET = E[(µ̃T − µ̂)2]

= V[µ̃T − µ̂] + E[µ̃T − µ̂]2

= V

 1

cn

∑
i∈T

xi + YT −
1

n

∑
i∈[n]

xi

+ (µT − µ)2

= V

[
1

cn

∑
i∈T

xi −
1

n

∑
i∈T

xi −
1

n

∑
i∈L

xi + YT

]
+ (µT − µ)2

=
(1− c)2

cn
σ2
T +

1− c

n
σ2
L + s2T + (µT − µ)2.

This error has three components,
(1−c)2

cn
σ2
T + 1−c

n
σ2
L, s

2
T , and (µT − µ)2. The first component is

the error induced by subsampling only the TCM users – we refer to this as the excess sampling

error. The second component is the error due to DP – we refer to this as the privacy error. The

third component is the bias error induced by the groups’ means differing.

We now define the LM baseline estimator. Since the LM does not require trust in the curator,

the estimator in this model can utilize the full set of users’ data. We refer to this baseline estimator

as the Full-LM estimator, and define it formally as follows.

Definition 2.3.5. Suppose each user i privately reports their data as xi + YL,i, where YL,i is a

random variable with 0 mean and s2L variance chosen such that DP is satisfied for user i. The

Full-LM estimator is then:

µ̃F =
1

n

∑
i∈[n]

(xi + YL,i).

Lemma 2.3.6. µ̃F has MSE:

EF =
s2L
n
.
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Proof.

EF = E[(µ̃F − µ̂)2]

= V[µ̃F − µ̂] + E[µ̃F − µ̂]2︸ ︷︷ ︸
0

= V

 1

n

∑
i∈[n]

(xi + YL,i)−
1

n

∑
i∈[n]

xi


=

s2L
n
.

This error only consists of a single simple component: the privacy error. Since the entire dataset

is used, there is no excess sampling error and no bias error.

2.3.1.3 Measuring Utility Against Both Baselines

While we measure an estimator’s absolute utility using MSE, we are primarily interested in a

hybrid estimator’s relative utility compared to the baseline estimators. Towards this, we first

define howwemeasure a hybrid estimator’s utility against the best of the two baseline estimators.

Since no baseline estimator is “best” across all parameter regimes, we precisely characterize the

parameter regimes where each baseline estimator is dominant. We then motivate and define

a second, weaker measure of a hybrid estimator’s utility against the worst of the two baseline

estimators. While we primarily use the stronger of the two utility measures in this section, the

weaker utility measure comes in handy for showing that our hybrid estimators never perform

worse than both baseline estimators simultaneously.

For any hybrid estimator with MSE E , we seek to compare its utility against the MSEs of the

baseline estimators. Specifically, we define the hybrid estimator’s relative improvement over the

best of the two baseline estimators as itsMSE improvement factor both baselines’MSEs. Formally,

this is:
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Definition 2.3.7. The relative improvement of an estimator with MSE E over the best baseline

estimator is:

R(E) = min{ET , EF}
E .

Thus, for a given setting of parameters, R(E) > 1 implies that the hybrid estimator has higher

utility than both baseline estimators simultaneously.

This measure of relative improvement can be rewritten to explicitly consider the parameter

regimes (i.e., the ranges of parameters µ, σ2, n, c,m, etc.) where each of the baseline estimators

achieves themin{·}. That is, we determine the parameter configurations in which the TCM-Only

estimator is better/worse than the Full-LM estimator. Intuitively, we expect that when very few

users opt in to the TCM, the TCM-Only estimator’s large excess sampling error will overshadow

its smaller privacy error (relative to the Full-LM estimator’s privacy error). This intuition is made

precise by considering “critical values” of c and n that determine the regimes where each of the

estimators yields better utility.

Lemma 2.3.8. Let ncrit and ccrit be defined as follows.

ncrit =
cs2L + (1− c)((1− c)σ2

T − cσ2
L)

c((µT − µ)2 + s2T )

ccrit =


σ2
L

σ2
L+s2L

, σT = σL,

2σ2
T−σ2

L+s2L−
√

(σ2
L−s2L)2+4s2Lσ

2
T

2(σ2
T−σ2

L)
, σT ̸= σL.

We have that ET ≤ EF if and only if c > ccrit and n ≤ ncrit.

Proof. Directly reduce the system of inequalities constructed by ET ≤ EF in conjunction with

the regions given by the valid parameter ranges. This immediately yields the result.

This characterization allows us to partition the definition of relative improvement into the be-

havior of each baseline estimator, rewritten as follows.
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Definition 2.3.9. The relative improvement of an estimator with MSE E over the best baseline

estimator is:

R(E) = 1

E ·


ET if c > ccrit and n ≤ ncrit

EL otherwise.

The behavior of these two cases further depends on the privacy mechanism used, as that

dictates sT and sL. For example, when using the ϵ-DP Laplace mechanism in the homogeneous

setting where both group means are µ and variances are σ2
, these definitions of critical values

and relative improvement become the following.

Lemma 2.3.10. Adding ϵ-DP Laplace noise for privacy, define ccrit = ϵ2σ2

2m2+ϵ2σ2 and ncrit =

2m2

c(2cm2−(1−c)ϵ2σ2)
. We have that ET ≤ EF if and only if c > ccrit and n ≥ ncrit.

Definition 2.3.11. Adding ϵ-DP Laplace noise for privacy, the relative improvement of an esti-

mator with MSE E over the best baseline estimator is:

R(E) = 1

E ·


1−c
cn

σ2 + 2m2

c2n2ϵ2
if c > ccrit and n ≥ ncrit

2m2

nϵ2
otherwise.

Thus, once the fraction of users opting in to the TCM is large enough, the TCM-Only estimator has

better MSE than the Full-LM estimator. In all other regimes, the Full-LM estimator has better

MSE than the TCM-Only estimator. This aligns with our intuition.

Ideally, hybrid estimators would have R(E) ≥ 1 for all parameters. If the parameter regions

can be computed where each baseline estimator has the best MSE, then a hybrid estimator can be

designed to use this knowledge to trivially ensure R(E) = 1. However, depending on the setting

(such as when variance is unknown), determining these regions precisely may not be feasible. In

these cases, we want to at least ensure that the hybrid estimator is never performing worse than

both baselines, and do so by defining the following measure of relative improvement.
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Definition 2.3.12. The relative improvement of an estimator E over the worst baseline estimator

is:

r(E) = max{ET , EF}
E .

Our characterization of the critical values in Lemma 2.3.8 enables r(ε) to be rewritten as

follows.

Definition 2.3.13. The relative improvement of an estimator withMSE E over the worst baseline

estimator is:

r(E) = 1

E ·


s2L
n

if c > ccrit and n ≤ ncrit

1−c
cn

σ2 + s2T otherwise.

2.3.2 Hybrid Estimator Family

Depending on the setting, designing a hybrid estimator that outperforms at least one of these

baselines in all parameter regimes can be trivial. Similarly, designing a hybrid estimator that

outperforms both baselines in some regimes can be trivial. One challenge solved in this section

is designing a hybrid estimator that provably outperforms both baselines across all regimes. To

accomplish this, we design a family of estimators within the hybrid model.

Because this problem is not intuitively decomposable into distinct tasks, we are unable to

utilize a specialization-based approach (Section 2.1) to designing a hybrid estimator. Instead,

we adopt a direct-combination approach to design a family of hybrid mean estimators µ̃H(w)

parameterized by w ∈ [0, 1]. Informally, estimators in this family independently compute priva-

tized estimates for the TCM and LM groups under their respective trust models, then output a

convex combination of the estimates weighted by w.

µ̃H(w) computes the privatized estimate for the TCM group via the TCM-Only baseline esti-

mator µ̃T . To compute the privatized estimate for the LM group, µ̃H(w) utilizes a new private

estimator in the LM model, referred to as the LM-Only estimator. The LM-Only estimator µ̃L is
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nearly identical to the baseline Full-LM estimator µ̃F , except that µ̃L uses only the data of the

LM users (rather than using the data of all the users). It is formally defined as follows.

Definition 2.3.14. The LM-Only estimator is:

µ̃L =
1

(1− c)n

∑
i∈L

(xi + YL,i),

where, for each i ∈ L, YL,i is a random variable with 0 mean and s2L variance chosen such that

DP is satisfied for user i.

Lemma 2.3.15. µ̃L has expected squared error:

EL =
c2

(1− c)n
σ2
L +

c

n
σ2
T +

1

(1− c)n
s2L + (µL − µ)2.

Proof.

EL = E[(µ̃L − µ̂)2]

= V[µ̃L − µ̂] + E[µ̃L − µ̂]2

= V

 1

(1− c)n

∑
i∈L

(xi + YL,i)−
1

n

∑
i∈[n]

xi

+ (µL − µ)2

= V

[
c

(1− c)n

∑
i∈L

xi −
1

n

∑
i∈T

xi +
1

(1− c)n

∑
i∈L

YL,i

]
+ (µL − µ)2

=
c2

(1− c)n
σ2
L +

c

n
σ2
T +

1

(1− c)n
s2L + (µL − µ)2.

In addition to the privacy error, due to the lack of TCM users, this estimator also has excess

sampling error as well as bias error. Since it has strictly greater error than the Full-LM estimator,

it is not used as one of the baseline estimators.

With the independent TCM and LM components of the hybrid estimator family defined, we

now formally define µ̃H(w) and derive its MSE.
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Definition 2.3.16. The hybrid estimator family, parameterized by w ∈ [0, 1], is:

µ̃H(w) = wµ̃T + (1− w)µ̃L.

Lemma 2.3.17. µ̃H(w) has expected squared error:

EH(w) =
(w − c)2

cn
σ2
T +

(w − c)2

(1− c)n
σ2
L + w2s2T +

(1− w)2

(1− c)n
s2L + (wµT + (1− w)µL − µ)2.

Proof.

EH(w) = E[(µ̃H(w)− µ̂)2]

= V[µ̃H(w)− µ̂] + E[µ̃H(w)− µ̂]2

= V[wµ̃T + (1− w)µ̃L − µ̂] + (wµT + (1− w)µL − µ)2

= V[wµ̃T − cµ̂T + (1− w)µ̃L − (1− c)µ̂L] + (wµT + (1− w)µL − µ)2

=
(w − c)2

cn
σ2
T +

(w − c)2

(1− c)n
σ2
L + w2s2T +

(1− w)2

(1− c)n
s2L + (wµT + (1− w)µL − µ)2.

Hybrid estimators in this family have all three types of error — excess sampling error, privacy

error, and bias error — where the amounts of each error type depend on the weighting w.

2.3.3 Homogeneous, Known-Variance Setting

We now derive a concrete hybrid estimator in the homogeneous setting by carefully choosing

a particular weighting for the hybrid estimator family from Definition 2.3.16. We then show,

both theoretically and empirically, that the derived estimator always outperforms both baselines

estimators.

To select a weighting for the hybrid estimator family, we restrict our focus to the homoge-

neous setting, where both groups’ means are the same (µ = µT = µL) and variances are the

same (σ2 = σ2
T = σ2

L). Beyond simplifying the expressions that we analyze, the homogeneous
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setting eliminates bias error from our defined estimators, which removes any dependence on µ

from the derived error expressions. This is important, since the curator’s goal is to learn µ from

the data; thus, no particular knowledge of µ is assumed. Therefore, in the homogeneous setting,

a weighting can be chosen by analyzing the hybrid estimator’s derived error expressions without

needing any knowledge of µ. However, there is still excess sampling error for the estimators in

this setting — in other words, error expressions still depend on the data variance σ2
. Thus, in this

portion of the thesis, we make the common assumption in statistical literature that σ2
is known

to the curator, and derive and analyze the optimal hybrid estimator from the convex family. In

the subsequent portion of the thesis, we lift this assumption.

2.3.3.1 KVH Estimator

We now derive and analyze the “known-variance hybrid” (KVH) estimator by computing the

optimal weighting w∗ that minimizes EH(w). This can be analytically computed and directly

implemented by the curator, since each term of EH(w) is known in this setting.

Definition 2.3.18. The known-variance hybrid estimator in the homogeneous setting is:

µ̃KVH = w∗µ̃T + (1− w∗)µ̃L,

where w∗ =
c(σ2+s2L)

σ2+c(ns2T (1−c)+s2L)
is obtained by minimizing EH(w) with respect to w.

Lemma 2.3.19. µ̃KVH has expected squared error:

EKVH =
(w∗ − c)2

c(1− c)n
σ2 + w∗2s2T + (1− w∗)2

s2L
(1− c)n

.

Although all users’ data are used here, weighting the estimates by w∗ induces excess sampling

error
(w∗−c)2
c(1−c)n σ

2
, and the privacy error w∗2s2T + (1−w∗)2

(1−c)n s2L is the weighted combination of the

groups’ privacy errors.
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Now we compute and analyze the relative improvement in MSE of the KVH estimator over

the best MSE of the TCM-Only and Full-LM estimators.

Theorem 2.3.20. The relative improvement of µ̃KVH over the better of µ̃T and µ̃F is:

R(EKVH ) = γ ·


1−c
cn

σ2 + s2T if c > ccrit and n ≤ ncrit

s2L
n

otherwise,

where γ =
(1−c)σ2s2L+cn(cσ2+s2L)s

2
T

n(σ2+cs2L)+(1−c)cn2s2T
and ccrit and ncrit are as defined in Lemma 2.3.8.

Proof. Direct application of Lemmas 2.3.4, 2.3.6, and 2.3.19 to Definition 2.3.9.

Algebraic analysis of this relative improvement reveals that R(EKVH ) > 1 when the number

of TCM users is less than s2L/s
2
T . For the standard 0-mean additive noise DP mechanisms, this

condition is trivially satisfied. For instance, when adding noise from the Laplace mechanism

to achieve ϵ-DP, we have that s2L/s
2
T = c2n2 ≥ cn = |T |. Moreover, although R(EKVH ) is

theoretically unbounded, using the ϵ-DP Laplace mechanism in the high-privacy regime (ϵ ≤ 1)

enables a tight characterization of the maximum possible relative improvement.

Corollary 2.3.21. The maximum relative utility of µ̃KVH when using the Laplace mechanism in

the high-privacy regime is bounded as:

17/8 ≤ max
ϵ≤1

c,n,m,σ

R(EKVH ) ≤ 16/7.

Proof. For upper-boundingR(EKVH ), we first note that Popoviciu’s inequality [Pop35] states that

a random variable bounded in [a, b] has variance at most (b−a)2/4. For our purposes, this ensures

σ2 ≤ m2/4.

For real-world use cases, it is realistic to constrain ϵ to the “high-privacy” regime of ϵ ≤ 1.

Thus, with ϵ ≤ 1 and σ2 ≤ m2/4, we have 0 ≤ ϵ2σ2/m2 ≤ 1/4.
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Letting y = ϵ2σ2/m2
, we now upper-bound the improvement ratio as follows.

R(EKVH ) ≤
2(2− c)m2

2m2 − (1− c)ϵ2σ2
=

2(2− c)

2− (1− c)y
≤ 16/7,

where the final inequality stems from constrained maximization across c ∈ [0, 1] and y ∈ [0, 1/4]

(justified by Popoviciu’s inequality).

A lower-bound is given by the following concrete instance. Let m = 1, ϵ = 1, σ2 = 1/4, and

c = 1
18

(
1 +

√
288+n

n

)
. Then, as n→∞, we have that R(EKVH ) converges to 17/8.

2.3.3.2 Empirical Evaluation of R(EKVH )

To better understand what improvements one can expect from µ̃KVH in practical applications,

we empirically evaluate R(EKVH ) using the ϵ-DP Laplace mechanism in the context of various

datasets. Note that although the hybrid estimator’s performance is dependent on the data distri-

bution only through σ, n, andm, we use datasets to realistically motivate these values.

In Figure 2.13, we use three synthetic datasets from the Beta(α, β) distribution: Beta(10, 10),

Beta(1, 1), and Beta(0.1, 0.1). These symmetric distributions are chosen to induce different σ

values — low (σ ≈ 0.109), medium (σ ≈ 0.289), and high (σ ≈ 0.456). For each distribution,

R(EKVH ) is plotted across n ∈ [103, 105], c ∈ {0.5%, 5%}, and ϵ ∈ {0.1, 1}. Since the Beta

distributions are supported on the interval [0, 1], we let m = 1. Figures 2.13b,c,d show that in

these settings, R(EKVH ) is lower-bounded by 1 and is never much larger than 2, matching our

mathematical analysis. Observe that the “peaking” behavior of some curves is caused by the

ncrit and ccrit values being surpassed, which corresponds to the TCM group’s data beginning to

outperform the LM group’s data in terms of MSE. The curves that do not appear to peak either

have trivially surpassed the critical values (i.e., ncrit < 1 with c > ccrit) or have c < ccrit.

Importantly, they do not change behavior at some n not shown in the figures.

In Figure 2.14, we use a real-world dataset of salaries of n = 252, 540 employees in the Uni-

versity of California system in 2010 [Cal]. This dataset was chosen due to its relatively high

asymmetry, with a maximum salary of m ≈ 2, 349, 033 and standard deviation of σ ≈ 53, 254
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Figure 2.13: (a) Probability density functions of Beta(α, β) distributions for various α, β values.

(b,c,d) The relative improvement R(EKVH ) for each Beta distribution across a range of n values,

for various c and ϵ values.
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Figure 2.14: (a) Distribution of salaries of UC employees. (b) The relative improvement R(EKVH )
across a range of c and ϵ values.

(both assumed to be known). As σ, n, andm are determined by the dataset, we evaluateR(EKVH )

across a large space of the remaining free parameters: c ∈ [0.1%, 10%] and ϵ ∈ [0.1, 10]. We see

the relative improvement peak just above 2 in the high-privacy regime, with this maximum im-

provement continuing into the low-privacy regime.

2.3.4 Homogeneous, Unknown-Variance Setting

In this portion, we derive a different estimator from the hybrid family for the homogeneous

setting, now applied to the case where the variance σ2
of the data is not known. This is a more

realistic setting, as an analyst with no knowledge of the distribution’s mean typically also does

not have knowledge of its variance.

The KVH estimator is able to use knowledge of the variance to weigh the estimates of the two

groups so that the trade-off of excess sampling error and privacy error is optimally balanced. In

this unknown-variance case, determining the optimal weighting is no longer viable. Nevertheless,

we can heuristically choose a weighting which may (or may not) perform well depending on the

underlying distribution. Thus, we propose a heuristic weighting choice for combining the groups’

estimates and analyze it theoretically and empirically.
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2.3.4.1 PWH Estimator

We now propose and analyze a hybrid estimator with a heuristically chosen weighting that is

based on the amount of privacy noise each group adds. We choose this heuristic weighting by

considering only the induced privacy error of each group’s estimate. Thus, we refer to this as

the “privacy-weighted hybrid” (PWH) estimator
10
. This weighting seeks solely to optimally bal-

ance privacy error between the groups, and therefore ignores the induced excess sampling error.

Explicitly, from EH(w) of Lemma 2.3.17 applied to the homogeneous setting, this weighting cor-

responds to choosing w to minimize w2s2T + (1− w)2
s2L

(1−c)n , stated in the following definition.

Definition 2.3.22. The privacy-weighted hybrid estimator is:

µ̃PWH = wPWH µ̃T + (1− wPWH )µ̃L,

where wPWH =
s2L

s2L+(1−c)ns2T

Lemma 2.3.23. µ̃PWH has MSE:

EPWH =
(1− c)cn2s4T (cσ2 + s2L) + cns2Ls

2
T (2(c− 1)σ2 + s2L) + (1− c)σ2s4L

cn (s2L + (1− c)ns2T )
2

.

This estimator has a mixture of both excess sampling error and privacy error. Since the privacy

error was directly optimized, we expect this estimator to do well when the data variance σ2
is

small, as this will naturally induce small excess sampling error.

Nowwe are able to discuss the relative improvement of the PWH estimator over the baselines.

10
We additionally investigated a naive weighting heuristic: weight the estimates based purely on the group size

(i.e., w = c). We omit it because empirical evaluations showed that for practical parameters, it was inferior to the

PWH estimator.
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Theorem 2.3.24. The relative improvements of the PWH estimator µ̃PWH over µ̃T and µ̃F are:

R(EPWH ) = γ ·


1−c
cn

σ2 + s2T if c > ccrit ∧ n ≤ ncrit

s2L
n

otherwise,

r(EPWH ) = γ ·


s2L
n

if c > ccrit ∧ n ≤ ncrit

1−c
cn

σ2 + s2T otherwise,

where γ=
cn(s2L+(1−c)ns2T )2

(1−c)cn2s4
T (cσ2+s2

L)+cns2
L
s2
T (2(c−1)σ2+s2

L)+(1−c)σ2s4
L

and ccrit and ncrit are as defined in Defini-

tion 2.3.9.

Proof. Direct application of Lemmas 2.3.4, 2.3.6, and 2.3.23 to: Definition 2.3.9 for R(EPWH ), and

Definition 2.3.13 for r(EPWH ).

With the generic noise-addition privacymechanisms, algebraic analysis of the weaker relative

improvement measure reveals r(EPWH ) > 1 unconditionally. That is, we confirm that the PWH

estimator always outperforms at least one of the baseline mechanisms.

However, the regions whereR(EPWH ) is greater than 1 are difficult to obtain analytically with

these generic mechanisms. By restricting our attention to the Laplace noise addition mechanism,

we find that R(EPWH ) > 1 is satisfied under certain conditions. The first is a “low relative

privacy” regime where ϵ ≥
√
2m
σ

. That is, once ϵ is large enough, we have R(EPWH ) > 1. For

ϵ under this threshold, achieving R(EPWH ) > 1 requires the following conditions on c and n:

either c ≤ ϵ2σ2

2m2 , or c >
ϵ2σ2

2m2 ∧ n < 2m2(1+c)
c(2cm2−ϵ2σ2)

. Since intuitively understanding these conditions

can be challenging, we instead turn to an empirical evaluation of the estimator.

2.3.4.2 Empirical Evaluation of R(EPWH ) and r(EPWH )

Here, we perform an empirical evaluation of the PWH estimator analogous to the analysis done

in Section 2.3.3.2.
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Figure 2.15: Across a range of n values, for various c and ϵ values for each Beta distribution

(plotted in Figure 2.13a): (a,b,c) shows R(EPWH ) values and (d,e,f) shows r(EPWH ) values.

Figure 2.15 presents R(EPWH ) (top row) and r(EPWH ) (bottom row) using the same Beta dis-

tributions and parameters (n ∈ [103, 105], c ∈ {0.5%, 5%}, and ϵ ∈ {0.1, 1}). We find that there

are many regions whereR(EPWH ) achieves a value of just greater than 1, and some regions where

it achieves values competitive with the KVH estimator. Unsurprisingly, since this weighting is

chosen without accounting for the variance, there are also clear regions where R(EPWH ) is no-

ticeably less than 1. Even in the regions where R(EPWH ) is low, r(EPWH ) (in the bottom row)

shows that the PWH estimator often significantly improves over the worse of the two baseline

estimators.

Figure 2.16 presents heat maps of R(EPWH ) and r(EPWH ) for the UC salaries dataset across

the same parameters as before (c ∈ [0.1%, 10%] and ϵ ∈ [0.1, 10]), with the rightmost figure

on a log scale. We find that R(EPWH ) achieves a value of slightly greater than 1 across a large

portion of the space. The results here tell a similar story to that of Figure 2.15. Most of the space

has R(EPWH ) values above 1, and even approaching 2 in a narrow region. There is also a small

region at the large c values where the relative improvement drops below 0.5. The majority of the
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Figure 2.16: The relative improvements R(EPWH ) (a) and r(EPWH ) (b) across a range of c and ϵ
values, with a log scale on (b).

space has r(EPWH ) between 10 and 100, although it includes a region at the high ϵ values where

this relative improvement exceeds 1, 500.

2.3.5 Heterogeneous Setting

Having examined our hybrid estimators in the heterogeneous setting, we now turn our focus

to examining the effects of the groups’ distributions diverging on the quality of our estimators.

This is motivated by the fact that the hybrid model allows users to self-partition based on their

trust preferences. Such self-partitioning may cause the groups’ distributions to be different. For

instance, since the TCM users have similar trust preferences, their data may also be more similar

to each other’s than to the LM users’ data. This could manifest as variance-skewness between

the groups. Alternatively, the TCM users may have fundamentally different data than the LM

users, which would manifest as mean-skewness between the groups. Thus, we examine the case

where the group means are the same but their variances are different, as well as the case where

the group means are different but their variances are the same. To understand these skewness

effects, we empirically evaluate R(EKVH )
11
.

11
We also performed the same empirical evaluation with the unknown-variance PWH estimator. The results were

very similar to the KVH estimator’s, and the conclusions were the same. Thus, we omit them for brevity.
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Although the heterogeneous setting is more general and complex, we can still derive the

optimal weighting for the KVH estimator analogously to homogeneous KVH weighting of Defi-

nition 2.3.18.

Definition 2.3.25. The known-variance hybrid estimator in the heterogeneous setting is:

µ̃KVH = w∗µ̃T + (1− w∗)µ̃L,

where w∗ =
c(s2L+cσ2

L+(1−c)(n(µL−µ)(µL−µT )+σ2
T ))

cs2L+(1−c)cn((µL−µT )2+s2T )+cσ2
L+(1−c)σ2

T

2.3.5.1 Variance-Skewness

In the heterogeneous setting, we first analyze the case where µT = µL but σ2
T ̸= σ2

L. This reduces

the KVH estimator’s weighting to w∗ =
c(s2L+cσ2

L+(1−c)σ2
T )

cs2L+(1−c)cns2T+cσ2
L+(1−c)σ2

T
. To gain insight into the effect

of variance-skewness, we recall two Beta distributions previously used in our empirical evalua-

tions: the low variance Beta(10, 10) distribution (σ = 0.109) and the high variance Beta(0.1, 0.1)

distribution (σ = 0.456). We evaluate R(EKVH ) in two scenarios: when the TCM group has data

drawn from the low variance distribution but the LM group has data drawn from the high vari-

ance distribution, and vice versa. Figure 2.17 gives the results across the same range of n, c, and

ϵ values as used in previous experiments.

The similarities between Figure 2.17 and Figure 2.13 demonstrate that our estimator is robust

to deviations in the LM group’s variance. For example, Figure 2.13b shows R(EKVH ) when all

the data is from the low variance distribution; that figure nearly exactly matches Figure 2.17a

despite the fact that most of the data is now from the LM group’s high variance distribution.

As this applies to both of Figure 2.13’s graphs, it is clear that the relative improvement heavily

depends on the variance of the TCM group, regardless of whether the LM group had the low

or high variance data. In fact, in both graphs, the difference in relative improvement from the

homogeneous case with variance σ2
to the heterogeneous case where only the TCM group has

variance σ2
T = σ2

does not vary by more than ±0.1, and, typically, varies by less than ±0.01.

75



0 20000 40000 60000 80000 100000
n

1.0

1.2

1.4

1.6

1.8

2.0
R(

KV
H
)

T = Beta(10, 10), L = Beta(0.1, 0.1)
c=0.005, =0.1
c=0.005, =1
c=0.05, =0.1
c=0.05, =1

0 20000 40000 60000 80000 100000
n

1.0

1.2

1.4

1.6

1.8

2.0

R(
KV

H
)

T = Beta(0.1, 0.1), L = Beta(10, 10)
c=0.005, =0.1
c=0.005, =1
c=0.05, =0.1
c=0.05, =1

(a) (b)

Figure 2.17: The relative improvement R(EKVH ) values when: (a) the TCM group has low vari-

ance data but the LM group has high, and (b) when the TCM group has high variance data but

the LM group has low.

2.3.5.2 Mean-Skewness

Rather than the groups’ variances differing, we now analyze the case where µT ̸= µL but σ2
T =

σ2
L. This reduces the KVH estimator’s weighting to w∗ =

c(s2L+(1−c)n(µL−µ)(µL−µT )+σ2)

cs2L+(1−c)cn((µL−µT )2+s2T )+σ2 . Impor-

tantly, this expression depends on the curator’s knowledge of µT and µL – an unreasonable re-

quirement, since the curator’s overarching goal is to learn the mean from the user data. For

applications where the groups’ means are assumed to be different, computing separate estimates

of each group’s mean in their respective trust models would likely be more useful than a joint

estimate. Thus, we instead explore mean-skewness from the point of view of a curator who mis-

takenly believes they are operating in the homogeneous setting, and thus uses the homogeneous

weighting from Definition 2.3.18. This is useful in practice, as it demonstrates how a curator can

use our analytical expressions for their specific problem instance to understand how utility is

affected by misspecified assumptions about user data.

To analyze this case, we set up the following experiment, displayed in Figure 2.18. We start

with the control for the experiments: set both groups to the same distribution DT = DL and

obtain R(EKVH ). Next, we retain the distributional shape for both groups, but shift them in

opposite directions; e.g., DT − t,DL + t for some t. We obtain the new R(EKVH ) values under

76



these distributions, and compare against the un-shifted results. For clarity, we denote the relative

improvement on the t-shifted distribution as Rt(EKVH ).

We expect that as the divergence in means t increases, the relative utility of our hybrid esti-

mator will decrease. To test this hypothesis concretely, we use the medium variance Beta(1, 1)

distribution (σ = 0.289) from our previous empirical evaluations as the experiment’s base distri-

bution. We center this distribution at 1without rescaling, inducing support on [0.5, 1.5]. Then we

set bothDT andDL to this distribution, and obtain R0(EKVH ) on it (Figure 2.18ab). Next, we add

a small shift of t = 0.25 to each of the groups’ distributions in opposite directions; i.e.,DT − 0.25

and DL + 0.25, so that |µT − µL| = 0.5. These distributions, along with the corresponding

R0.25(EKVH ) results, are shown in the second column of Figure 2.18. Finally, the third column of

Figure 2.18 shows the analogous distributions and results when a large shift of t = 0.5 is added so

that |µT − µL| = 1.12 Unsurprisingly, these results depict a clear negative impact on the relative

improvement as the means diverge, showing that our estimator is sensitive to skewness in the

groups’ means.

2.3.6 Hybrid Estimator Applications

Taking a step back from analyzing the utility of hybrid estimators, in this portion we demonstrate

how more complex non-hybrid mechanisms can be easily extended into the hybrid model by

inserting our hybrid estimator as a mean estimation primitive. In particular, we implement a

hybrid variant of the classic DPK-means mechanism [Dwo11] using the PWH hybrid estimator

as a sub-component, then empirically evaluate its effectiveness.

12
One caveat to these shifts is that as the data distribution becomes wider, the noise required to ensure DP must

increase. Since we are interested in the effect of mean-skewness here, and not the effect of distribution-width, we

conservatively fix m = 2 for all experiments. That is, the same level of noise is used across shift-amounts, even if

less noise may have sufficed to ensure DP.
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Figure 2.18: (Left column) Initial data distributions with no mean shift, and the KVH estimator’s

corresponding relative improvement. Small (middle column) and large (right column) mean shifts

of the initial data distribution with t = 0.25 and t = 0.5 respectively, along with the KVH

estimator’s corresponding change in relative improvement.

The K-means problem is to partition n d-dimensional real-valued observations x1, . . . , xn

into K clusters C1, . . . , CK such that the within-cluster sum of squares (WCSS) is minimized.

Letting µk denote the center of cluster Ck, the formal problem is to solve the following:

argmin
C1,...,CK

K∑
k=1

∑
x∈Ck

||x− µk||2.

This problem is NP-hard to solve exactly, and thus heuristic algorithms are generally used to

solve it approximately. The classic DP mechanism [Dwo11] for this problem was designed for the

TCM. This mechanism partitions the total privacy budget across τ iterations, and each iteration

refines the estimates of the clusters’ centers. Each iterative refinement assigns the observations

to their nearest cluster, then updates each cluster’s center to the mean of all points within it while

carefully applying Laplace noise.
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2.3.6.1 Defining the Hybrid K-Means Mechanism

We extend this mechanism to the LM in a simple way. First, LM users expend a portion of their

privacy budget reporting their data to the curator with Laplace noise. The curator uses their data

analogously to the TCM case, except that in each iteration, LM users use a portion of their privacy

budget to report the nearest cluster to them using a generalization of Randomized Response (very

similar to the clients’ query reporting in BLENDER) — this reduces bias in the cluster centers,

relative to computing the nearest cluster directly based on their already reported data.

Other DPK-means mechanisms exist in both the TCM [NRS07; Su+16; BF16; Noc+16; Bal+17;

LS20] and LM [NS18; SZY19; Xia+20; Ste20] which improve on our two non-hybrid K-means

mechanisms. However, our goal here is to simply demonstrate how our hybrid estimator can be

effectively leveraged in more complex applications. Thus, we present our hybridK-means mech-

anism in Algorithm 2.7, which combines our simpler TCM and LM mechanisms in the following

straightforward way. Each separate mechanism performs its iterative refinement as previously

described. Then, at the end of each iteration, the TCM and LM cluster center estimates are com-

bined using the PWH estimator on each dimension.

2.3.6.2 Evaluating the Hybrid K-Means Mechanism

We evaluate the hybrid mechanism in the following experiment, showing that it automatically

achieves WCSS on par with the best baseline mechanism. The baselines here, analogous to our

estimators’ TCM-Only and Full-LM MSE baselines, are: the WCSS of the TCM variant using

only TCM data, and the WCSS of the LM variant using all data. The dataset used for evalua-

tions is shown in Figure 2.19a: 4 clusters of 2-dimensional spherical Gaussian data with scale

σ ≈ 0.028 and 40, 000 points per cluster. Rather than focusing on a more complex instance, we

chose this relatively straightforward, low-dimensional clustering instance because we are using

the single-dimensional mean estimators (in both the classic trust models as well as the hybrid

model) independently across each dimension as well as repeatedly across iterations. For more
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Algorithm 2.7 Hybrid-DP K-means

Input
• T, L: Sets of TCM and LM users, respectively.

• m: Maximum range of the data.

• d: Dimension of the data.

• K : Total number of clusters.

• τ : Number of estimation iterations.

Body
1: Initialize centers of clusters C1, . . . , CK .

2: Let bT = (md+1)τ
ϵ

and bL = md(τ+1)
ϵ

.

3: Each i ∈ T reports x̃i = xi to the curator.

4: Each i ∈ L reports x̃i = xi + YL,i to the curator, YL,i ∼ Lap
d(bL).

5: for t = 1 . . . τ do
6: Assign each x̃i from T to closest cluster non-privately.

7: Assign each x̃i fromL to closest cluster with prob.
exp(ϵ/(τ+1))−1

K+exp(ϵ/(τ+1))−1 ; to a uniformly random

cluster otherwise.

8: for k = 1 . . . K do
9: Count T users in cluster k with DP: ÑT = |Ck ∩ T |+ Y1, Y1 ∼ Lap(bT ).
10: Compute mean of all T users’ data in cluster kwith DP: µ̃T = 1

ÑT

(∑
i∈T xi + Y2

)
, Y2 ∼

Lap
d(bT ).

11: Count L users in cluster k: ÑL = |Ck ∩ L|.
12: Compute mean of all L users’ data in cluster k: µ̃L = 1

ÑL

∑
i∈L x̃i.

13: Let c = ÑT

ÑT+ÑL
, s2T = 2b2T , and s2L = 2b2L.

14: Compute w
PWH

as defined in Def. 2.3.22.

15: end for
16: end for
17: Return: centers of C1, . . . , Ck.
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(a) (b) (c)

Figure 2.19: (a) Clustering dataset with 4 clusters of 2d spherical Gaussians with σ ≈ 0.028 and

40, 000 points per cluster. (b,c) WCSS values of each model’s mechanism across a range of total

iterations τ , 0.1% and 1% fractions of TCM users respectively, and ϵ = 7.

complex instances, more advanced privacy-preserving clustering mechanisms in the classic trust

models should be applied, each requiring their own adaptations to fit into our hybrid model.

For this problem instance, the privacy budget for each mechanism is ϵ = 7; this relatively high

budget is necessitated by the TCM and LM mechanisms to achieve acceptable practical utility.

In Figure 2.19bc, across a range of total iterations τ and fractions of TCM users 0.1% and 1%,

we evaluate the mean WCSS values of each model’s mechanism with 364 trials. The regimes

where each non-hybrid mechanism is better than the other is unclear a priori, and the results

here show one example of each. By simply combining the two using our hybrid estimator, the

hybrid mechanism is able to maintain a WCSS approximately equal to the better of the two.

2.4 Privacy Amplification Via Intergroup Interaction

In this section, we address the third high-level question of this chapter. Specifically, we answer

the question:

To what extent does the privacy of a hybrid mechanism depend on the com-

putations performed and on interactions between the two groups?

The benefit, and even the necessity, of intergroup interaction in the hybrid model is an open

area of research. In Section 2.2 with the BLENDERmechanism, we have shown experimentally that
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high utility is achievable by intelligently utilizing intergroup interaction. In Section 2.3 with hy-

brid mean estimators, we have shownmathematically that we can guarantee high utility for mean

estimation without any intergroup interaction. However, both works only focus on intergroup

interaction’s effect on a mechanism’s utility — neither consider its effect on privacy. Each group

is assumed to independently guarantee privacy, without considering how subsequent interaction

and processing by the curator may affect the DP guarantee. The post-processing property of

DP ensures that such interaction and processing will never degrade privacy, but the question of

whether it improves privacy has remained unstudied. It is precisely this effect on privacy that

we introduce and examine in this portion. We find that for our hybrid mean estimators, the

differential privacy guarantee against certain adversaries can be significantly improved.

We are specifically interested in users’ privacy against adversaries who can view the out-

put of the curator’s computation (i.e., output-viewing adversaries). This is the classic adversary

model that the TCM protects against. The LM protects against a larger class of adversaries: the

output-viewing adversaries, as well as against the curator itself. However, the LM’s singular DP

guarantee does not distinguish between these adversary types. In the hybrid model, each group’s

DP guarantee may be overly conservative against output-viewing adversaries. This is because it

does not account for the curator’s joint processing of the LM users’ reports — which each include

their own privacy noise — in conjunction with the TCM group’s privacy noise.

Our Contributions

In this section, we concretely investigate users’ DP guarantee against output-viewing adversaries

as a result of: 1) the combined privacy noise from both groups, in conjunction with 2) the inter-

group interaction strategy of the curator. We show that these two components together can serve

to amplify users’ privacy against this adversary class. This provides a two-tier DP guarantee for

LM users — their standard DP guarantee against the curator, and an improved guarantee against

output-viewing adversaries — and an improved DP guarantee for TCM users.
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To accomplish this, we first analyze the intergroup privacy amplification of our hybrid mean

estimator family. To start, we show how some DP mechanisms may not enable any such privacy

amplification. We immediately follow this up by showing how other DP mechanisms may enable

significant intergroup privacy interaction. Then, turning our focus to the BLENDER mechanism,

we detail why its interaction strategy does not provide any intergroup privacy amplification.

Together, these examples highlight the value of looking at the effects of intergroup interaction

not only on utility, but also on privacy.

2.4.1 Hybrid Mean Estimator Amplification

For the hybrid mean estimator family (Definition 2.3.16) that generically utilizes additive noise

mechanisms to ensure DP, we describe how intergroup privacy amplification may arise. We then

show that users’ DP guarantee depends strongly on which concrete additive noise mechanism is

chosen.

Recall that the hybrid estimator family utilizes no intergroup interaction. I.e., the curator only

outputs once: after it has received all the LM users’ reports, computed both groups’ estimates,

then combined them. For adversaries that can only view the output of this curator, the combined

noise from all the LM users and the TCM group can serve to improve the DP guarantee. To see

this, we rewrite the estimator as

µ̃H(w) = wµ̃T + (1− w)µ̃L

= w

(
1

cn

∑
i∈T

xi + YT

)
+ (1− w)

(
1

(1− c)n

∑
i∈L

(xi + YL,i)

)

=

(
w

cn

∑
i∈T

xi +
1− w

(1− c)n

∑
i∈L

xi

)
︸ ︷︷ ︸

non-private hybrid mean estimator

+

(
wYT +

1− w

(1− c)n

∑
i∈L

YL,i

)
︸ ︷︷ ︸

joint privacy noise

.

Thus, this joint privacy noise is providing some DP guarantee for the mechanism as a whole,

rather than individual noises protecting the individual groups.
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There is one caveat: the TCM users’ noise is provided by the curator and never revealed to

them, but the LM users each provide their own noise. DP requires that the privacy noise not be

known to an adversary. Any noise that is known cannot be considered towards the DP guarantee.

Here, we assume LM users are semi-honest; i.e., they apply the specified mechanism properly to

their data, but they know the privacy noise they add. Thus, LM user i’s knowledge of their own

privacy noise weakens the joint noise term by an additive
1−w

(1−c)nYL,i amount. Furthermore, they

may choose to form coalitions with other users and share this knowledge to adversarially weaken

the joint privacy noise term. The largest such coalition, denoted by A, reduces the joint privacy

noise by
1−w

(1−c)n
∑

i∈A YL,i. Excluding the largest such coalition’s noise enables the remaining joint

privacy noise to be analyzed for a DP guarantee.

The DP guarantee from the remaining joint noise depends on the privacymechanisms used by

the TCM group and each LM user. To establish this claim, we prove two theorems here. The first

is that TCM group and LM users all utilizing the ϵ-DP Laplace mechanism does not enable any

privacy amplification. The second is that the TCM group and LM users all utilizing the (ϵ, δ)-DP

Gaussian mechanism can enable significant privacy amplification.

2.4.1.1 Amplification Analysis with the Laplace Mechanism

For our first amplification analysis, we show that the ϵ-DP Laplace mechanism would yield a

joint noise term which guarantees ϵ′-DP where ϵ′ = ϵ. That is, there is no intergroup privacy

amplification when using this mechanism to ensure privacy of our hybrid estimators.

Theorem 2.4.1. Assume the curator adds Laplace noise of variance s2T to provide an ϵ-DP guar-

antee for the TCM group, and that each LM user adds Laplace noise of variance s2L to provide an

ϵ-DP guarantee for themselves. The users’ ϵ′-DP guarantee against output-viewing adversaries

is given by ϵ′ = ϵ.

Proof. In this proof, we show that the unweighted sum of n reports, each privatized by the ϵ-

DP Laplace mechanism, only provides an ϵ′-DP joint guarantee of ϵ′ = ϵ. A convex weighting
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of the terms in this sum, necessary for normalization (to compute the mean instead of sum) as

well as to account for differing report weightings (such as the difference in weight between the

TCM group’s joint report compared to each LM user’s individual report) yields the same joint

guarantee, proving our claim. To formalize this, we define the privatized sum of n reports as

S̃n =
∑
i∈[n]

(xi + Yi)

=
∑
i∈[n]

xi︸ ︷︷ ︸
Sn

+
∑
i∈[n]

Yi︸ ︷︷ ︸
Y

where xi ∈ [0,m], Yi ∼ Lap(b), and b = m/ϵ for each i. We show here that the joint noise Y

provides ϵ′-DP for Sn against output-viewing adversaries, where ϵ′ = ϵ.

To begin, we show that accounting for the joint privacy noise never yields a DP guarantee

that is weaker than any user’s original DP guarantee. First, note that each user at least has the

ϵ-DP guarantee via their own privacy noise. Thus, by the post-processing property of DP, we

have ϵ′ ≤ ϵ as a trivial upper bound. If ϵ ≤ ϵ′ without any adversarial users, then our upper

bound implies ϵ ≤ ϵ′ with an arbitrary number of adversarial users.

Having established an upper bound, we turn to lower-bounding ϵ′; i.e., determining a max-

imal level of privacy amplification. For simplicity, we perform this analysis assuming that no

users are adversarial; however, the results of this analysis are the same if we assume that there

are n′ < n adversarial users, so this assumption is without loss of generality. We begin this anal-

ysis by examining the probability distribution of each user’s individual noise, and how all users’

privacy noises combine into a new probability distribution. Each user’s individual privacy noise
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Yj sampled from the Laplace distribution with scale b can be defined in terms of the distribu-

tion’s characteristic function (i.e., the Fourier transform of the distribution’s probability density

function [Luk72]) as

φYj
(t) = E[eitYj ]

=
1

1 + b2t2
.

The characteristic function of Y is then

φY (t) = E[eit
∑

j∈[n] Yj ]

=
∏
j∈[n]

φYj
(t)

=

(
1

1 + b2t2

)n

.

Y ’s probability density function, pY (x), can be recovered from the characteristic function [Bil08]

via the inverse Fourier transform as

pY (x) =
1

2π

∫
R
eitxφY (t)dt

=
1

2π

∫
R

eitx

(1 + b2t2)n
dt

=
2

1
2
−n

√
πb

1
2
+nΓ(n)

K 1
2
−n

( |x|
b

)
|x|n− 1

2 ,

where φY (t) is the complex conjugate of φY (t) and K·(·) is the modified Bessel function of the

second kind [AS68]. For ϵ′-DP, noting that sensitivity ∆1(Sn) = m, we must bound

−ϵ′ ≤ max
k∈[−m,m]

log

(
pY (x)

pY (x+ k)

)
≤ ϵ′.
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Consider the instance where k = m and x→∞:

lim
x→∞

log

(
pY (x)

pY (x+ k)

)
= lim

x→∞
log

(
K 1

2
−n
(
x
b

)
K 1

2
−n
(
x+m
b

) ( x

x+m

)n− 1
2

)

=
m

b
.

By the definition of b, we have m
b
= ϵ. Therefore

ϵ = lim
x→∞

log

(
p(x)

p(x+ k)

)
≤ max

k∈[−m,m]
log

(
p(x)

p(x+ k)

)
≤ ϵ′.

Thus, we conclude that ϵ′ = ϵ.

2.4.1.2 Amplification Analysis with the Gaussian Mechanism

Having proven a negative amplification result based on the Laplace mechanism, we now turn

to a positive amplification result based on the Gaussian mechanism. Specifically, consider the

hybrid estimator family where the Gaussian mechanism is used to ensure privacy; i.e., where the

curator adds YT ∼ Normal(0, s2T ) and each LM user i adds YL,i ∼ Normal(0, s2L), where s
2
T and

s2L are calibrated to ensure (ϵ, δ)-DP for both groups. Analyzing the joint noise of such a hybrid

estimator provides the following amplified DP guarantee against output-viewing adversaries. We

first provide the mathematical result and proof, then illustrate the impact of the result with a brief

empirical evaluation.

Theorem 2.4.2. Assume the curator adds Gaussian noise of variance s2T to provide an (ϵ, δ)-

DP guarantee for the TCM group, and that each LM user adds Gaussian noise of variance s2L to
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provide an (ϵ, δ)-DP guarantee for themselves. Furthermore, assume that the largest adversarial

coalition is A. Define

s′2 = w2s2T +

(
1− w

(1− c)n

)2

|L \ A|s2L.

The users’ ϵ′-DP guarantee against output-viewing adversaries is given by:

ϵ′ =

√
2 ln(1.25/δ)m

ns′
·


w
c

if w ≤ c

1−w
1−c otherwise.

Proof. Let µ̂H(w) denote the non-private hybrid mean estimator, defined as

µ̂H(w) =
w

cn

∑
i∈T

xi +
1− w

(1− c)n

∑
i∈L

xi.

Let Y denote the joint privacy noise without the largest adversarial coalition, defined as

Y = wYT +
1− w

(1− c)n

∑
i∈L\A

YL,i.

We first compute the sensitivity ∆2(µ̂H(w)) = max ∥µ̂H(w)− µ̂′H(w)∥2, where µ̂H(w) is

the estimator on any dataset D = T ∪ L and µ̂′H(w) is the estimator on any neighboring

dataset D′ = T ′ ∪ L′ differing in the data of at most one user. If the data of one T user is

changed, thenmax ∥µ̂H(w)− µ̂′H(w)∥2 ≤ wm
cn

. If instead the data of one L user is changed, then

max ∥µ̂H(w)− µ̂′H(w)∥2 ≤ (1−w)m
(1−c)n . When w ≤ c, we have that wm

cn
≤ (1−w)m

(1−c)n . Thus,

∆2(µ̂H(w)) =


wm
cn

if w ≤ c

(1−w)m
(1−c)n otherwise.
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We now characterize the joint privacy noise. Let YT ∼ Normal(0, s2T ) and YL,i ∼

Normal(0, s2L,i) such that sT satisfies (ϵ, δ)-DP for the TCM group and sL,i satisfies (ϵ, δ)-DP

for each LM user i. Because a weighted combination of Gaussians is also a Gaussian, we have

Y ∼ Normal

(
0, s′2 := w2s2t +

(
1− w

(1− c)n

)2

|L \ A|s2L

)
.

Recall that the classic privacy result for the Gaussian mechanism (Theorem 1.1.7) guarantees

(ϵ, δ)-DP for a function f with sensitivity ∆2(f) by adding noise from Normal(0, s2) such that

s =
√

2 log(1.25/δ)∆2(f)/ϵ. Applying this result to our problem with a fixed δ′ = δ and solving

ϵ′, we have

ϵ′ =

√
2 ln(1.25/δ)∆2(µ̂H(w))

s′

=

√
2 ln(1.25/δ)m

ns′
·


w
c

if w ≤ c

1−w
1−c otherwise.

For practical applications, even with a moderate fraction of adversarial LM users, the privacy

amplification achieved when using the Gaussian mechanism can be significant. To make this

concrete, consider the UC salary dataset used in the previous experiments (previously displayed

in Figure 2.14). Suppose we compute the KVH estimator with each group using the Gaussian

mechanism with ϵ = 1 and δ = 10−7. In Figure 2.20, we plot all users’ amplified ϵ′ value across

c ∈ [0.1%, 10%] and across the fraction of LM users assumed to be adversarial. In most of the

space, the privacy amplification that users receive corresponds to more than a doubling of their

privacy budget.
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Figure 2.20: The amplified (ϵ′, δ)-DP guarantee when the (1, 10−7)-DP Gaussian mechanism is

used in the KVH estimator.

2.4.1.3 Amplification Disparity Between the Gaussian and Laplace Mechanisms

We have proven in this section that our hybrid estimator using the ϵ-DP Laplace mechanism

cannot amplify privacy, whereas using the (ϵ, δ)-DP Gaussian mechanism can amplify privacy

by more than a factor of two. However, we have not discussed why this may be the case. The

possible causes are either the mechanisms themselves, or the DP definition being utilized (i.e.,

pure DP for the Laplace mechanism and approximate DP for the Gaussian mechanism). One

promising approach to understanding the root cause could be to analyze our hybrid estimator

using the general (ϵ, δ)-DP variant of the Laplace mechanism (Theorem 1.1.5), and studying the

resulting joint privacy noise in the approximate DP setting. If privacy amplification is still not

possible, this indicates that the mechanism itself is the root cause. On the other hand, if privacy

amplification is possible using the (ϵ, δ)-DP Laplace mechanism, this hints that relaxing the DP

definition from pure to approximate DP might be the primary factor for making amplification

possible. We do not perform this analysis in this work, and instead leave it as an intriguing

direction for future study.
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2.4.2 BLENDER Amplification

Now that we have shown how a lack of intergroup interaction can facilitate privacy amplification,

we turn our focus to BLENDER’s intergroup interaction strategy designed to improve utility. In-

formally, BLENDER takes advantage of the TCM group by having it identify the heavy hitters. The

TCM group then passes the identified heavy hitters on to the LM users, who perform frequency

estimation. The curator then combines the LM users’ reports and outputs the heavy hitters along

with their frequencies.

One might be tempted to analyze this final output for an amplified DP guarantee. However,

the initial output of the curator — the privatized list of heavy hitters from the TCM group — has

already been released to all LM users. Unless all LM users are guaranteed to be non-adversarial,

the TCM users gain no further benefit from the incorporation of the LM users’ privacy noise.

Conversely, the LM users may experience privacy amplification through the combination of their

locally incorporated privacy noise. However, this is solely due to intragroup interaction in the

LM. Such intragroup interaction (and related topics) are currently an active area of research on

the LM [Bit+17; Che+19; Bal+19a; Erl+19; GPV19; BC20; Gha+21], and we do not explore them

further here.

2.5 Related Works

In this section, we discuss other works related to our exploration of the hybrid DP model in

this chapter. We first briefly discuss the most relevant subsequent work to ours, which takes

a theoretical approach to proving the hybrid model’s power over the classic trust models. We

then discuss some of the other trust models in differential privacy beyond the two classic trust

models and our hybrid model. Finally, we briefly discuss other works on the non-hybrid DPmean

estimation problem.
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Proof of the Hybrid Model’s Power

The most directly related research to the topics presented in this chapter is the subsequent work

of Beimel et al. [Bei+20]. Their work examines precisely the same hybrid DP model as this work,

the combined trusted curator/local model, and has the same goal of understanding whether this

hybrid model is more powerful than its constituent models.

To accomplish this goal, they perform theoretical analyses on multiple tasks that each exhibit

a known gap between what utility is achievable in both of the classic trust models. Their results

demonstrate that it is possible to solve problems in the hybrid model which cannot be solved with

reasonable utility in the TCM or LM separately. This is concrete proof that for certain tasks, the

hybrid model can be strictly more powerful than the classic trust models (even when compared

against provably optimal mechanisms in the classic trust models).

They additionally show that there are problems which cannot be solved in the TCM or LM

separately, and can be solved in the hybrid model, but only if the TCM and LM groups interact

with each other. This definitively proves that for certain tasks, intergroup interaction is indeed

necessary for achieving high utility. However, they do not analyze the privacy implications of

such intergroup interaction (e.g., as we do in this chapter with intergroup privacy amplification).

Finally, they analyze a problem which does not significantly benefit from the hybrid model:

basic hypothesis testing. They prove that if there exists a hybrid model mechanism that distin-

guishes between two distributions effectively, then there also exists a TCM or LM mechanism

which does so nearly as effectively. This result informally hints at a lack of power of the hybrid

model for the problem of mean estimation in certain settings. Specifically, the lack of power that

it implies is that a hybrid mechanism cannot achieve more than a constant factor improvement

over optimal mechanisms in the classic trust models. This roughly aligns with our findings for

mean estimation in our setting, where our hybrid estimators improve over baseline estimators in

the classic trust models, but (for practical parameters) only by a constant factor (Corollary 2.3.21).
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Alternative Hybrid Models of Trust

Beyond the TCM/LM hybrid model, there are multiple alternative hybrid models in the DP liter-

ature. We discuss the two most popular and promising such models here.

The most popular is the public/private hybrid model of Beimel et al. [BNS13] and Ji and

Elkan [JE13]. In this model, most users desire the guarantees of differential privacy, but some

users have made their data available for use without requiring any privacy guarantees. In this

model, some works assume that DP is achieved in the TCM [HCB16; Pap+17], while others as-

sume that DP is achieved in the LM [XSM16; Wan+21]. In both cases, the works show that by

operating in the public/private hybrid model, one can significantly improve utility relative to

either model separately. Recently, theoretical works [BMA19; Bas+20a] have explored the lim-

its of this model’s power via lower bounds on the sample complexity of fundamental statistical

problems.

Another powerful hybrid trust model recently introduced is the shufflemodel, which was con-

ceptually proposed by Bittau et al. [Bit+17] before being mathematically defined and analyzed for

its DP guarantees by Cheu et al. [Che+19] and Erlingsson et al. [Erl+19]. In this model, users pri-

vately submit their data under the LM via an anonymous channel to the curator. The anonymous

channel randomly permutes the users’ contributions so that the curator has no knowledge of

what data belongs to which user. This “shuffling” enables users to achieve improved DP guar-

antees over their LM guarantees in isolation. Several works have since improved the original

analyses and expanded the shuffle model to achieve even greater improvements in the users’ DP

guarantee [Bal+19b; GPV19; Bal+19a; Gha+20a; Gha+20b; Gha+21].

Non-hybrid DP Mean Estimation

For the DP mean estimation problem in this chapter, our work leveraged straightforward base-

line mean estimators in the classic trust models to enable us to obtain exact finite-sample utility

expressions. However, DP mean estimation of distributions under both the TCM and LM has
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been studied since the models’ introductions [Blu+05; War65; DJW13], and continues to be ac-

tively studied [Fel17; KV18; Ach+18; GRS19; DJW18; Kam+19a; Kam+19b; Jos+19a; Du+20; BS19;

KSU20; Gha+20b; Bis+20].

The goal of mean estimation research under both models is to maximize utility while mini-

mizing the sample complexity by making various distributional assumptions. Some assumptions

are stronger than those made in this section, such as assuming the data is drawn from a nar-

row family of distributions. Other assumptions are weaker, such as requiring only that the mean

lies within a certain range or that higher moments are bounded. Because of the complexity of

the mechanisms and their reliance on the distributional assumptions in the related works, their

utility expressions are typically bounds or asymptotic rather than exact. Since we need exact

finite-sample utility expressions to precisely quantify the utility of our hybrid estimator relative

to the baselines, we are unable to use their estimators and assumptions. Nevertheless, the related

works show a practically significant sample complexity gap between the TCM and LM in their

respective settings, further motivating mean estimation in the hybrid model.

2.6 Future Directions

There are several promising directions for future work on the hybrid model in general as well as

for the specific applications of heavy hitter estimation and mean estimation. We discuss these

directions here.

User Behavior in the Hybrid Model

For the hybrid model, we believe the most interesting direction is exploring how a hybrid mech-

anism’s utility may be impacted in several ways by the users’ ability to self-partition into their

preferred trust models. For instance, one such way that a hybrid mechanism’s utility can be im-

pacted is through distributional differences in the users’ data across the two trust model groups.

In analyzing the heavy hitter estimation problem with BLENDER, we had implicitly assumed that
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each user’s data in the TCM and LM groups were drawn i.i.d. from the same distribution. Then,

in analyzing the mean estimation problem with our hybrid estimator family, we examined how

utility is impacted when the users’ data in the TCM group comes from a different distribution

than the users’ data in the LM group. However, both scenarios assumed that regardless of a

user’s group choice, the user would be guaranteed the same level of privacy; i.e., the mechanism

satisfies (ϵ, δ)-DP for the user no matter their group choice. A new avenue to explore is how a

hybrid mechanism’s utility is impacted when the privacy level is allowed to differ between the

two groups. In the LM, a similar concept has been recently introduced as the “privacy elastic-

ity of behavior” [Dek+22], which quantifies a user’s propensity to change their behavior when

the privacy level is changed. In our hybrid setting, this new direction instead considers a user’s

propensity to change their preferred trust model when the privacy level is changed.

Depending on the extent to which users trust the curator versus their desired level of pri-

vacy, allowing the privacy level to vary between the groups could dramatically impact the hybrid

mechanism’s final utility. For instance, consider the scenario where all users are guaranteed ϵ = 1

DP regardless of their trust model choice, and suppose 1% choose the TCM while the remaining

99% choose the LM. Furthermore, suppose that most LM users only weakly prefer the LM over

the TCM, but they highly prefer a strong DP guarantee. In this scenario, it may be possible to

counterintuitively improve the final utility of the hybrid mechanism by decreasing the ϵ value

guaranteed to users who choose the TCM group. A decrease for the TCM group to ϵ = 0.95

(while leaving the LM group’s ϵ at 1) may then incentivize a new TCM opt-in rate of 10%. Al-

though each TCM user’s contribution to the group’s utility would diminish, the overall utility of

the TCM group would increase due to the disproportionate number of new users opting in.

Understanding this behavior in practice (in controlled lab settings or through observational

studies after deployment), as well asmodeling this behavior theoretically and analyzing its impact

on a mechanism’s utility, is a promising path to increasing the power of the hybrid model.
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Applications

For the specific applications studied in this chapter, heavy hitter estimation and mean estimation,

the most apparent direction for future research is in improving the sub-mechanisms that our de-

signed hybrid mechanisms were built upon. Because the hybrid mechanisms that we designed

were fairly modular in nature, the sub-mechanisms that each group utilized can be interchanged

with alternative DP mechanisms without explicitly affecting how the other group should func-

tion. This means that as newer research is conducted on these problems in either the TCM or LM

(in isolation) and improved DP mechanisms are designed, the new mechanisms can be trivially

incorporated into our hybrid mechanisms and thus improve their utility.

Specific to the heavy hitter estimation problemwith BLENDER, another important direction for

future work is to shift from an empirical utility analysis to a theoretical utility analysis. Under

certain assumptions, this could enable a priori estimates of the utility, rather than relying on

costly and time-consuming simulations.

For the mean estimation problem, an important direction for future work is in relaxing the

assumptions considered in this chapter (e.g., the known boundedness of data, the knowledge and

finiteness of the variance, etc.). This is important because of how fundamental the mean estima-

tion problem is in practical data analysis problems — having high-utility hybrid mean estimators

for many possible distributional/knowledge settings would enable DP mechanism designers to

more easily build their own complex hybrid mechanisms by leveraging simple hybrid building

blocks.

Finally, we believe designing new algorithms in the hybrid model for other real-world appli-

cations in data analysis and machine learning is a fruitful direction for future work.
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2.A Chapter Appendix

Deferred BLENDER Proofs

In this portion, we detail the previously deferred proofs (Section 2.2.1) for the unbiasedness of

BLENDER’s various estimators.

Lemma 2.2.3. σ̂2
O,⟨q,u⟩ is an unbiased variance estimate for the opt-in group’s record probabilities

ifmO = 1.

Proof. Given the head list, the distribution of EstimateOptinProbabilities’ estimate for a

record ⟨q, u⟩ is given by rO,⟨q,u⟩ = p⟨q,u⟩ +
Y
|DT | , where Y ∼ Laplace(bT ) with bT being the scale

parameter and recalling that |DT | is the total number of records from the opt-in users used to

estimate probabilities. The empirical estimator for rO,⟨q,u⟩ is r̂O,⟨q,u⟩ =
1
|DT |

∑|DT |
j=1 Xj + Y , where

Xj ∼ Bernoulli(p⟨q,u⟩) is the random variable indicating whether report j was record ⟨q, u⟩.
The expectation of this estimator is given by E[r̂O,⟨q,u⟩] = p⟨q,u⟩. Thus, r̂O,⟨q,u⟩ is an unbiased

estimator for p⟨q,u⟩. We define p̂O,⟨q,u⟩ = r̂O,⟨q,u⟩ to explicitly reference it as the estimator of p⟨q,u⟩.

The variance for this estimator is

σ2
O,⟨q,u⟩ = V[p̂O,⟨q,u⟩] (2.4)

= V
[ 1

|DT |
(|DT |∑
j=1

Xj + Y
)]

=
1

|DT |2
(
V
[|DT |∑
j=1

Xj

]
+ V [Y ]

)
(2.5)

=
1

|DT |2
(|DT |∑

j=1

V [Xj ] + V [Y ]
)

(2.6)

=
1

|DT |2
(
|DT | · p⟨q,u⟩(1− p⟨q,u⟩)

)
+ 2
( bT
|DT |

)2
=

p⟨q,u⟩(1− p⟨q,u⟩)

|DT |
+ 2
( bT
|DT |

)2
.

Equality 2.5 comes from the independence between Y and all Xj . Equality 2.6 relies on an as-

sumption of independence between Xj, Xk for all j ̸= k (i.e., the iid assumption discussed prior

to the theorem statements).
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To compute this variance, we need to use the data in place of the unknown p⟨q,u⟩. Using p̂O,⟨q,u⟩

directly in place of p⟨q,u⟩ requires a
|DT |
|DT |−1 factor correction (known as “Bessel’s correction”

13
) to

generate an unbiased estimate. Thus, the variance of each opt-in record probability estimate is:

σ̂2
O,⟨q,u⟩ =

|DT |
|DT |−1

(
p̂O,⟨q,u⟩(1−p̂O,⟨q,u⟩)

|DT | + 2
(

bT
|DT |

)2)
.

Lemma 2.2.5. p̂C,⟨q,u⟩ is an unbiased estimate of the clients’ record probabilities.

Proof. Reporting query/URL records is a two-stage process. A query is first selected followed by a

URL being selected, thus forming a complete record. Debiasing records is similarly accomplished

in two stages.

1. Debiasing query probability estimates: Let rC,q denote the probability that the mechanism has

received query q as a report, and let pq be the true probability of a user having query q. We want

to learn pq based on rC,q. By the design of our mechanism,

rC,q = t · pq +
∑
q′ ̸=q

pq′(1− t)
1

k − 1

= t · pq +
1− t

k − 1

∑
q′ ̸=q

pq′

= t · pq +
1− t

k − 1
(1− pq).

Solving for pq in terms of rC,q yields pq =
rC,q− 1−t

k−1

t− 1−t
k−1

. Using the obtained data for the query r̂C,q,

we estimate pC,q as p̂C,q =
r̂C,q− 1−t

k−1

t− 1−t
k−1

.

2. Debiasing record probability estimates: Analogously, let rC,⟨q,u⟩ denote the probability that the

mechanism has received a record ⟨q, u⟩ as a report, and recall p⟨q,u⟩ is the record’s true proba-

bility in the dataset. Then rC,⟨q,u⟩ = t · tq · p⟨q,u⟩ +
(
t 1−tq
kq−1

)
(pq − p⟨q,u⟩) +

(
1−t
k−1 · 1

kq

)
(1 − pq),

recalling from the mechanism that kq is the number of URLs associated with query q and tq is

the probability of truthfully reporting u given that query q was reported. Solving for p⟨q,u⟩ yields

p⟨q,u⟩ =
rC,⟨q,u⟩−

(
t
1−tq
kq−1

pq+
(1−t)(1−pq)

(k−1)kq

)
t(tq− 1−tq

kq−1
)

.

13https://en.wikipedia.org/wiki/Bessel’s_correction
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Using the obtained data for the empirical report estimate r̂C,⟨q,u⟩ together with the query

estimate p̂C,q, we estimate p⟨q,u⟩ as p̂C,⟨q,u⟩ =
r̂C,⟨q,u⟩−

(
t
1−tq
kq−1

p̂C,q+
(1−t)(1−p̂C,q)

(k−1)kq

)
t(tq− 1−tq

kq−1
)

.

Lemma 2.2.6. σ̂2
C,⟨q,u⟩ is an unbiased variance estimate of the clients’ record probabilities ifmC = 1.

Proof. We first derive the variance estimate for the client group’s query probabilities, then move

on to the variance estimate for their record probabilities.

From the proof of Lemma 2.2.5, the distribution of the reported query q from the client algo-

rithm is given by rC,q = t · pq + 1−t
k−1(1− pq), and so the true probability of query q is distributed

as pq =
rC,q− 1−t

k−1

t− 1−t
k−1

. The empirical estimator for pq is p̂C,q =
r̂C,q− 1−t

k−1

t− 1−t
k−1

, where r̂C,q is the empiri-

cal estimator of rC,q defined explicitly as r̂C,q = 1
|DC |

∑|DC |
j=1 Xj , where Xj ∼ Bernoulli(rC,q) is

the random variable indicating whether report j was query q and recalling that |DC | is the total

number of records from the client users.

The variance of r̂C,q is

V[r̂C,q] = V
[ 1

|DC |

|DC |∑
j=1

Xj

]

=
( 1

|DC |
)2 |DC |∑

j=1

V [Xj ] (2.7)

=
( 1

|DC |
)2(|DC | · rC,q(1− rC,q)

)
(2.8)

=
rC,q(1− rC,q)

|DC |
,

where equality 2.7 relies on an assumption of independence between Xj, Xk for all j ̸= k (i.e.,

the iid assumption discussed prior to the theorem statements).

Then, the variance of p̂C,q is

σ2
C,q = V[p̂C,q] = V

[ r̂C,q − 1−t
k−1

t− 1−t
k−1

]
=

rC,q(1− rC,q)

|DC |
(
t− 1−t

k−1

)2 .
To compute this variance, we need to use the data in place of the unknown rC,q. Using r̂C,q

directly in place of rC,q requires including Bessel’s
|DC |
|DC |−1 factor correction to yield an unbi-

ased estimate. Thus, the variance of the query probability estimates by the client mechanism is:

99



σ̂2
C,q =

(
1

t− 1−t
k−1

)2
r̂C,q(1−r̂C,q)

|DC |−1 .

We now derive the variance estimate for the record probabilities. For a given query q and

corresponding URL u in head list, denote Xq
i as the indicator random variable that is 1 if user i

reported query q and 0 otherwise, and similarly denote X
⟨q,u⟩
i as the indicator random variable

that is 1 if user i reported query q and URL u and 0 otherwise. Thus,Xq
i ∼ Bern(rC,q) andX

⟨q,u⟩
i ∼

Bern(rC,⟨q,u⟩). The covariance between these two random variables is given by

Cov[Xq
i , X

⟨q,u⟩
i ] = E[Xq

i X
⟨q,u⟩
i ]− E[Xq

i ]E[X
⟨q,u⟩
i ] = rC,⟨q,u⟩ − rC,⟨q,u⟩rC,q = rC,⟨q,u⟩(1− rC,q).

Also, due to the i.i.d. assumption, for any other user j, we have Cov(Xq
i , X

⟨q,u⟩
j ) = 0. Thus, we

have the covariance between our empirical query and record estimates as

Cov[r̂q, r̂⟨q,u⟩] = Cov

[
1

|DC |
∑
i∈DC

Xq
i ,

1

|DC |
∑
i∈DC

X
⟨q,u⟩
i

]

=
1

|DC |2
Cov

[ ∑
i∈DC

Xq
i ,
∑
i∈DC

X
⟨q,u⟩
i

]

=
1

|DC |2
∑

i,j∈DC

Cov[Xq
i , X

⟨q,u⟩
j ]

=
1

|DC |2
∑
i∈DC

Cov[Xq
i , X

⟨q,u⟩
i ]

=
rC,⟨q,u⟩(1− rC,q)

|DC |
.
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Utilizing this covariance expression, we can now compute the desired variance estimate as:

σ2
C,⟨q,u⟩ = V[p̂C,⟨q,u⟩]

= V

 r̂C,⟨q,u⟩ −
(
t
1−tq
kq−1 p̂C,q +

(1−t)(1−p̂C,q)
(k−1)kq

)
t(tq − 1−tq

kq−1 )


=

1

t2(tq − 1−tq
kq−1 )

2
V
[
r̂C,⟨q,u⟩ −

(
t
1− tq
kq − 1

p̂C,q +
(1− t)(1− p̂C,q)

(k − 1)kq

)]
=

1

t2(tq − 1−tq
kq−1 )

2
V
[
r̂C,⟨q,u⟩ − p̂C,q

( 1− t

(k − 1)kq
− t

1− tq
kq − 1

)]
=

1

t2(tq − 1−tq
kq−1 )

2
·(

V
[
r̂C,⟨q,u⟩

]
+
( 1− t

(k − 1)kq
− t

1− tq
kq − 1

)2 V [p̂C,q] + 2
( 1− t

(k − 1)kq
− t

1− tq
kq − 1

)
Cov[p̂C,q, r̂C,⟨q,u⟩]

)
=

1

t2(tq − 1−tq
kq−1 )

2
·(

rC,⟨q,u⟩(1− rC,⟨q,u⟩)

|DC |
+
( 1− t

(k − 1)kq
− t

1− tq
kq − 1

)2
σ2
C,q + 2

( 1− t

(k − 1)kq
− t

1− tq
kq − 1

) 1

t− 1−t
k−1

Cov[r̂C,q, r̂C,⟨q,u⟩]

)

=
1

t2(tq − 1−tq
kq−1 )

2
·(

rC,⟨q,u⟩(1− rC,⟨q,u⟩)

|DC |
+
( 1− t

(k − 1)kq
− t

1− tq
kq − 1

)2
σ2
C,q + 2

( 1− t

(k − 1)kq
− t

1− tq
kq − 1

) 1

t− 1−t
k−1

rC,⟨q,u⟩(1− rC,q)

|DC |

)
.

Using our already computed estimates r̂C,q, r̂C,⟨q,u⟩, and σ̂2
C,⟨q,u⟩ (in place of rC,q, rC,⟨q,u⟩, and

σ2
C,⟨q,u⟩ respectively) and applying Bessel’s correction, we obtain the stated result.
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Chapter 3

Quantifying the Privacy–Utility Trade-off

To address the second high-level challenge of this thesis (Section 1.2) that hinders DP’s adoption

in practice — the lack of tools for analyzing complex DPmechanisms’ utilities —we present in this

chapter a novel method for quantifying DP mechanisms’ privacy–utility trade-offs
14
. Our new

method is especially suited for complex, hyperparameterized DP mechanisms, whose designers

are faced with a series of compounding challenges when attempting to quantify the mechanisms’

privacy–utility trade-offs — in fact, even the notion of a privacy–utility trade-off for such mecha-

nisms is ill-defined. Thus, our first contribution is to propose a formal definition for the privacy–

utility trade-off of hyperparameterized mechanisms. Grounded in this definition, we then de-

sign DPareto, a practical method to quantify DP mechanisms’ privacy–utility trade-offs using

only empirical measurements by leveraging well studied multi-objective Bayesian optimization

techniques. Finally, we analyze the performance of DPareto on several machine learning tasks

involving multiple models, architectures, and optimizers and compare its performance against

baseline methods. Our findings definitively establish that DPareto is both highly efficient and

highly effective at quantifying the privacy–utility trade-off of complex, hyperparameterized DP

mechanisms.

14
This chapter is based on work in our publication [Ave+20].
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3.1 Overview

Quantifying the trade-off between privacy and utility is a central topic in the DP literature. For

any given utility measure, a formal analysis of a mechanism’s privacy–utility trade-off quantifies

how the mechanism’s utility changes when its given privacy level (e.g., ϵ) is changed, yielding a

curve on the privacy vs. utility plane. Since the choice of privacy level is generally regarded as a

policy decision [Woo+18], quantifying this trade-off is essential to decision makers tasked with

balancing privacy and utility in real-world deployments of DP mechanisms [AS19b].

Quantifying the privacy–utility trade-off is not straightforward in practice. Primarily, analyti-

cal characterizations of the trade-off are only available for relatively simplemechanisms amenable

to mathematical treatment. Conducting such analyses for complex mechanisms of practical in-

terest is often infeasible. Further, DP mechanisms have more hyperparameters than their non-

private counterparts, most of which affect both privacy and utility.

Example: Amotivating application for this chapter is differentially private deep

learning. Differentially private stochastic optimization has been employed to

train feed-forward [Aba+16], convolutional [Car+18], and recurrent [McM+18]

neural networks, showing that reasonable accuracies can be achieved when se-

lecting hyperparameters carefully. The canonical non-private stochastic opti-

mization algorithm, stochastic gradient descent (SGD) [RM51; KW52], utilizes

hyperparameters that specify the learning rate, batch size, and number of epochs.

The state-of-the-art differentially private variant of the SGD mechanism, DP-

SGD [Aba+16], extends SGD by clipping and adding Gaussian noise to the com-

puted gradients in order to satisfy DP. This explicitly adds two new hyperparam-

eters — a clipping amount and a Gaussian noise scale — to ensure privacy, and

these new hyperparameters also implicitly affect utility.

In practice, tuning a DP mechanism’s hyperparameters to achieve a desirable privacy–utility

trade-off can be an arduous task, especially when utility analyses for the mechanism are loose
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or unavailable. Exacerbating this challenge is the fact that for some hyperparameterized DP

mechanisms, the privacy level is not explicitly specified as one of the inputs. Instead, the mecha-

nism’s privacy level must first be calculated from the hyperparameters. For example, in DP-SGD,

the privacy level must be calculated using the computationally intensive “moments accountant”

method [Aba+16]. Moreover, the same level of privacy can be obtained through the hyperparam-

eters in multiple ways; e.g., a given privacy level can be obtained for DP-SGD by either adjusting

the Gaussian noise amount or the gradient clipping amount while leaving the other fixed.

Taken together, these challenges can make achieving any specific level of privacy or utility

with a hyperparameterized DP mechanism difficult. As a result, no practical methods exist to

quantify hyperparameterized mechanisms’ entire privacy–utility trade-offs — even the defini-

tion of the “privacy–utility trade-off” is unclear in the presence of such hyperparameters. Con-

sequently, the central problem that we consider in this chapter of the thesis is:

How can we rigorously define a hyperparameterized DP mechanism’s privacy–utility

trade-off, and then how can we design a practical method for quantifying it?

We address this problem by first formalizing the quantification of a mechanism’s privacy–utility

trade-off as a Pareto front estimation problem (Section 3.2). We then develop DPareto, a method

to estimate the privacy–utility Pareto front using Bayesian optimization techniques (Section 3.3).

To determine the effectiveness of DPareto, we empirically evaluate it on a variety of machine

learning tasks (Section 3.4).

3.2 Defining the Privacy–Utility Trade-Off

Our first contribution is to concretely definewhat a hyperparameterizedDPmechanism’s privacy–

utility trade-off is for a given utility measure. We preface this contribution by motivating the def-

inition. We then detail the concrete formal definition, which enables us to reformulate the central
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problem of this chapter in a more precise way. Finally, to make our definition more intuitive, we

provide comprehensive illustrative examples from bothmachine learning and differential privacy.

Motivation Our proposed privacy–utility trade-off definition is motivated by what a prac-

titioner using a hyperparameterized DP mechanism primarily needs to understand about the

mechanism’s privacy and utility. For instance, we described how in DP-SGD, there can be many

settings of hyperparameters that achieve the same privacy level but that achieve different utility

levels. It is likely that many of these hyperparameter settings do not correspond to high utility

and are therefore not of interest to the practitioner. Instead, the practitioner is mainly interested

in which hyperparameter settings correspond to optimal utility for the DP mechanism at each

privacy level. Moreover, the practitioner needs both the privacy and utility to be concretely quan-

tified; for example, there may exist a theoretically optimal privacy analysis for the mechanism,

but if it is unknown or unavailable to the practitioner, then they will instead utilize the best anal-

ysis tools that they have at their disposal (e.g., the moments accountant method). Grounded in

this, we abstractly define the privacy–utility trade-off of hyperparameterized mechanisms as: the

quantification of the optimal utility that the mechanism can attain at any privacy level realizable

by the chosen privacy analysis.

3.2.1 The Privacy–Utility Pareto Front

We now formalize the abstract definition of a hyperparameterized DP mechanism’s privacy–

utility trade-off using the notion of Pareto fronts.

To discuss the trade-off between privacy and utility for a given problem, we consider a hy-

perparameterized family of mechanismsM = {Mλ : Dn → W | λ ∈ Λ}. Here, λ ∈ Λ is a

particular setting of hyperparameters, andMλ : Dn → W is a hyperparameterized DP mecha-

nism which takes n records from D and outputs a value inW . For example, in the context of a
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machine learning application, the familyM could consist of a set of DP machine learning mech-

anisms which take as input a training datasetD = (d1, . . . , dn) containing n example-label pairs

di = (xi, yi) ∈ D and produce as output the parameters w ∈ W ⊂ Rℓ
of a predictive model.

To capture the privacy–utility trade-off acrossM, we introduce two oracles to model the

effect of hyperparameter changes on the privacy and utility ofMλ.

• Privacy Oracle: We define the privacy oracle Pδ : Λ→ [0,+∞] to be a function that given

a choice of hyperparameters λ returns a value ϵ = Pδ(λ) such thatMλ satisfies (ϵ, δ)-DP

for a given δ. A concrete example of a privacy oracle, and the one that we primarily use in

this work, is the moments accountant technique proposed for DP-SGD [Aba+16]. We note

that the privacy oracle may not provide an exact, theoretically tight privacy accounting for

the mechanism; however, we assume the privacy oracle is sound in the sense that mecha-

nism’s true privacy guarantee will never be worse than what the oracle returns (i.e., if an

optimal analysis would conclude that the mechanism’s privacy level for a given choice of

hyperparameters λ is ϵ∗ , then ϵ∗ ≤ Pδ(λ)).

• Utility Oracle: We define the instance-specific utility oracle UD : Λ → [0, 1] to be a

function that given a choice of hyperparameters λ returns some utility measure of the

output distribution ofMλ(D). A concrete example of a utility oracle, and the one that

we primarily use in this work, is the classification accuracy of a trained model on a test

dataset. In practice, unlike the privacy oracle, the utility oracle will generally be noisy

due to intentional randomness in the mechanism (e.g., to ensure differential privacy, or to

initialize the model’s parameters) as well as randomness inherent in measuring the utility

of the output distribution itself (e.g., using a held-out test dataset to approximate the trained

model’s generalizability to a larger data space).

As informally discussed in this section’s motivation, the practical notion of a mechanism’s

privacy–utility trade-off is defined by the hyperparameter settings forMλ that simultaneously
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achieve maximal privacy and utility on a given input D. We formalize this using the concept of

a Pareto front. Informally, a Pareto front of a collection of points Γ ⊂ Rp
contains all points in

Γ where none of the coordinates can be decreased without increasing other coordinates while

remaining inside Γ. Formally, it is defined as follows.

Definition 3.2.1. Let Γ ⊂ Rp
and u, v ∈ Γ. We say that u dominates v if ui ≤ vi for all i ∈ [p],

and we write u ⪯ v. The Pareto front of Γ is the set of all non-dominated points:

PF(Γ) = {u ∈ Γ | v ̸⪯ u, ∀ v ∈ Γ \ {u}}.

Grounded in this definition, we define the privacy–utility trade-off of a mechanismM with

hyperparameter spaceΛ and oraclesPδ andUD to be the Pareto frontPF(Γ) of the 2-dimensional

set Γ = {(Pδ(λ), 1− UD(λ)) | λ ∈ Λ}15. Figure 3.1 provides a high level illustration of a Pareto

front generated from evaluating privacy and utility oracles on a set of hyperparameter settings.

Leveraging this new Pareto front definition of a mechanism’s privacy–utility trade-off, we

formally restate this chapter’s central problem as follows.

For any given hyperparameter space Λ, privacy oracle Pδ , and instance-specific utility

oracleUD, how canwe design a practical method to estimate a DPmechanism’s privacy–

utility Pareto front PF(Γ) = {(Pδ(λ), 1− UD(λ) | λ ∈ Λ}?

Remarks on the Oracles We conclude this portion by providing two brief remarks to clarify

the definitions and roles of the privacy and utility oracles.

Parametrizing the privacy oracle Pδ in terms of a fixed δ stems from the convention that ϵ is

considered the most important privacy parameter
16
, whereas δ is chosen to be a negligibly small

15
Since the points in the Pareto front are traditionally those thatminimize each dimension, we use anti-utility for

the second coordinate tomaintain consistency. Specifically, we use 1−UD(λ) because utility can often be normalized

to lie in [0, 1] in practice. However, such normalization is not required in this chapter, and any measure of anti-utility

(e.g., −UD(λ)) could be used instead.

16
This choice is without loss of generality since there is a connection between the two parameters guaranteeing

the existence of a valid ϵ for any valid δ [BBG18].
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Figure 3.1: Left: A complex space of hyperparameter settings, with several points arbitrarily

selected from it. Right: The privacy–utility Pareto front generated from privacy and utility ora-

cle evaluations of each hyperparameter setting. Colored points represent Pareto optimal points,

whereas grey points are dominated by at least one Pareto optimal point.

value (δ ≪ 1/n). This choice is also aligned with recent uses of DP in machine learning; i.e., the

privacy analysis is conducted under the framework of Rényi DP [Mir17], and the reported pri-

vacy guarantee is then obtained a posteriori and converted to a standard (ϵ, δ)-DP guarantee for

some fixed δ [Aba+16; GSC17; McM+18; Fel+18; WBK19]. In particular, in our subsequent evalua-

tions with gradient perturbation for stochastic optimization methods (Section 3.4), we implement

the privacy oracle using the moments accountant technique proposed by Abadi et al. [Aba+16]

coupled with the tight bounds provided by Wang et al. [WBK19] for Rényi DP amplification by

subsampling without replacement. More generally, privacy oracles can take the form of analytic

formulas or numerically optimized calculations, but future advances in empirical or black-box

evaluation of DP guarantees could also play the role of privacy oracles.

Parametrizing the utility oracle UD by a fixed input is a choice justified by the type of ap-

plications we analyze in our experiments (Section 3.4). Other applications may require different

variations, which our framework can easily accommodate by extending the definition of the util-

ity oracle. We also stress that since the mechanisms inM are randomized, the utility UD(λ) is
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a property of the output distribution ofMλ(D). This means that, in practice, one may have to

implement the oracle approximately, e.g., via sampling. In particular, in our subsequent exper-

iments we use a test dataset to measure the utility of a hyperparameter setting by evaluating

Mλ(D) a fixed number of times R to obtain model parameters w1, . . . , wR, and then compute

UD(λ) to be the average accuracy of the models on the test set.

3.2.2 Two Illustrative Examples

To concretely illustrate the oracles and Pareto front concept, we consider two distinct examples:

private logistic regression and the sparse vector technique. We select these two examples be-

cause they are both computationally light and have a low-dimensional hyperparameter space,

which enables us to compute their privacy–utility Pareto fronts nearly exactly via a fine-grained

grid search over the hyperparameter space. For brevity, we subsequently refer to Pareto fronts

computed via fine-grained grid search as the “exact” or “true” Pareto fronts with respect to the

potentially inexact (e.g., loose or noisy) privacy and utility oracles.

3.2.2.1 Private Logistic Regression

Our first illustrative example is a DP variant of a common machine learning problem: privately

training a simple logistic regression model with ℓ2 regularization. For this problem, we use the

ADULT dataset [Koh+96] partitioned into training and test sets.

We train themodel with differential privacy using themethod ofWu et al. [Wu+17, Algorithm

2] with default parameters
17
. In this method, the model is trained with mini-batch projected SGD,

then Gaussian noise is added to the output (the model’s parameters) to ensure privacy. The only

hyperparameters that need to be specified in this example are the regularization amount γ and

17
Default parameters are the smoothness (i.e., Lipschitz and strong convexity parameters of the loss) and the

learning rate.
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the standard deviation of the Gaussian noise σ, while the rest are fixed18. In this example, both

hyperparameters affect privacy and accuracy simultaneously.

We implement the privacy and utility oracles as follows. For the privacy oracle, we compute

the mechanism’s global sensitivity according to Wu et al. [Wu+17, Algorithm 2] and find the ϵ

corresponding to a fixed δ = 10−6 using the exact analysis of the Gaussian mechanism (Theo-

rem 1.1.8). To implement the utility oracle, we evaluate the classification error of the model on

the test set, averaging over 50 runs for each setting of the hyperparameters.

To obtain the exact Pareto front for this problem, we perform a fine-grained grid search over

γ ∈ [10−4, 100] and σ ∈ [10−1, 101]. The Pareto front and its corresponding hyperparameter

settings are displayed in Figure 3.2, along with the values returned by the privacy and utility

oracles across the entire range of hyperparameters.

3.2.2.2 Sparse Vector Technique

Our second illustrative example is the sparse vector technique (SVT) [Dwo+09], a DP mechanism

for interactively posingm queries against a fixed sensitive database and releasing only the indices

of queries that exceed a certain threshold. The naming of the mechanism reflects the fact that it

is specifically designed to achieve good utility when only a small number of queries are expected

to be above the threshold. As a foundational DP mechanism, SVT has found applications in a

number of problems, and several variants of it have been proposed [LSL17].

Algorithm 3.1 details our construction of a non-interactive variant of Lyu et al.’s SVT [LSL17,

Algorithm 7]. The standard SVT mechanism is parameterized by the target privacy ϵ. In order

to illustrate mechanisms whose hyperparameters affect both privacy and utility simultaneously,

we propose a non-standard construction of the SVT mechanism. Specifically, ours takes as input

a total noise level b and is tailored to answer m binary queries qi : Dn → {0, 1} with sensitivity

∆ = 1 and fixed threshold T = 1/2. The privacy and utility of the mechanism are controlled by

the noise level b and the bound on the number of answers C . In this example, either increasing

18
The fixed hyperparameters are the mini-batch sizem = 1 and number of epochs T = 10.

110



10−1 100 101

σ

10−4

10−3

10−2

10−1

100

γ

ε

20

40

60

80

100

120

140

10−1 100 101

σ

10−4

10−3

10−2

10−1

100

γ

Classification Error

0.20

0.25

0.30

0.35

0.40

0.45

0.50

10−4 10−2 100 102

ε

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C
la

ss
ifi

ca
ti

on
E

rr
or

Pareto Front

10−1 100 101

σ

10−4

10−3

10−2

10−1

100

γ

Pareto Inputs

Figure 3.2: Top: Values returned by the privacy and utility oracles across a range of hyperparam-

eters in the private logistic regression example. Bottom: The Pareto front and its corresponding

set of input points.
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b or decreasing C improves privacy and diminishes utility. The noise level is split across two

parameters b1 and b2 controlling how much noise is added to the threshold and to the query

answers respectively
19
.

Algorithm 3.1 Sparse Vector Technique (SVT)

Input
• D: Sensitive dataset.

• q1, . . . , qm: m binary queries.

Hyperparameters
• b: Noise scale.

• C : Upper-bound on number of answers.

Body
1: Let c = 0 and w = (0, . . . , 0) ∈ {0, 1}m.
2: Let ρ ∼ Laplace(b1), where b1 = b/(1 + (2C)1/3).
3: Let b2 = b− b1.
4: for i ∈ [m] do
5: Let ν ∼ Laplace(b2).
6: if qi(D) + ν ≥ 1

2
+ ρ then

7: Set wi = 1 and c = c+ 1.
8: if c ≥ C , break
9: end if
10: end for
11: Return: w.

We implement the privacy and utility oracles as follows. The privacy analysis of Algorithm 3.1

(whose proof we defer to the end-of-chapter Appendix 3.A) yields the following closed-form

privacy oracle for our mechanism: P0 = (1 + (2C)1/3)(1 + (2C)2/3)b−1. For the utility oracle,

we use the F1-score between the vector of true answers (q1(D), . . . , qm(D)) and the vector w

returned by SVT. This measures howwell the mechanism identifies the support of the queries that

return 1, while penalizing for false positives and false negatives. This is a non-standard utility

measure for SVT: prior utility analyses of SVT focus on providing an interval around the threshold

outside which the output is guaranteed to have no false positives or false negatives [DR+14].

19
The noise level split is based on Lyu et al.’s suggested privacy budget allocation [LSL17, Section 4.2].
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Figure 3.3: Top: Values returned by the privacy and utility oracles across a range of hyperparam-

eters in the SVT example. Bottom: The Pareto front and its corresponding set of input points.

Our utility measure is more fine-grained and relevant for practical applications, although no

theoretical utility analysis of SVT in terms of F1-score exists in literature.

In this example, we set m = 100 and pick queries at random such that exactly 10 of them

return a 1. Since the utility of SVT is sensitive to the query order, we evaluate the utility oracle by

running themechanism 50 times with a random query order and compute themeanF1-score. The

Pareto front and its corresponding hyperparameter settings are displayed in Figure 3.3, alongwith

the values returned by the privacy and utility oracles across the entire range of hyperparameters.
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3.3 Estimating the Privacy–Utility Pareto Front

With DPmechanisms’ privacy–utility trade-offs formally defined in terms of their privacy–utility

Pareto fronts, our second contribution is DPareto, a method for empirically estimating these

Pareto fronts. To begin, we define what it means to empirically estimate a Pareto front, and

how the utility of an estimated Pareto front is measured. We then provide a brief background

on multi-objective Bayesian optimization (BO), which forms the foundation of DPareto. Putting

together these two components, we then detail our DPareto method in full. To make DPareto’s

process more intuitive, we revisit the mechanisms from our earlier illustrative examples and use

them to demonstrate how the various components of DPareto work together to estimate the

mechanisms’ Pareto fronts.

3.3.1 Empirical Pareto Fronts and their Utility Measures

For practical DP mechanisms (e.g., using DP-SGD for a real-world machine learning task), com-

puting the exact privacy–utility Pareto front is infeasible due to the expensive computation of

both the privacy and utility oracles. Thus, the privacy–utility Pareto front must instead be es-

timated using a small number of oracle evaluations. However, even when the number of oracle

evaluations is fixed, different methodologies for where to evaluate the oracles (i.e., methods for

selecting hyperparameters) will generally yield different estimated Pareto fronts. Therefore, we

must define how to measure the utility of an empirically estimated Pareto front.

Towards this, we leverage the hypervolume of an estimated Pareto front [EK08; CDD14a;

Knu+17], defined as follows. Let E = {(λ,Pδ(λ),UD(λ))}ki=1 be an arbitrary set of k hyperpa-

rameters and corresponding privacy and utility oracle evaluations. Let PF(ΓE) be the empirical

Pareto front corresponding to these evaluations, where ΓE = {(Pδ(λ),UD(λ))}ki=1 denotes the

privacy and utility oracle evaluations from E. Let v̄ ∈ Rp
be some chosen “anti-ideal” point

20
; i.e.,

20
For instance, in the private logistic regression example, the anti-ideal point could correspond to the worst-case

ϵ and worst-case classification error.
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a point known a prioi to be dominated by all points in ΓE. The hypervolume HVv̄(PF(ΓE)) of

the region dominated by the Pareto front and bounded by the anti-ideal point is formally defined

as:

HVv̄(PF(ΓE)) = µ({v ∈ Rp | v ⪯ v̄, ∃u ∈ P u ⪯ v}),

where µ denotes the standard Lebesgue measure on Rp
. The choice of which specific anti-ideal

point to use does not make a difference regarding the Pareto optimality of any other potential

point, it only changes the measured hypervolume of a Pareto front. However, this measurement

is crucial when comparing multiple different Pareto fronts. Thus, for brevity, we assume the

anti-ideal point is fixed and henceforth drop it from our notation.

This quantification enables us to compare the quality of different methods’ estimated Pareto

fronts. Moreover, in this chapter, we make no assumptions about the behavior of an empirical

Pareto front or the relationship between points on an empirical Pareto front (e.g., we do not

assume concavity/convexity). As a result, the empirical Pareto fronts are always conservative,

meaning that they never overlap (or overestimate in terms of hypervolume) the true underlying

Pareto front. Therefore, the hypervolume utility measure additionally corresponds directly to

more accurate Pareto fronts; i.e., the larger the hypervolume of an estimated Pareto front, the

closer that estimated Pareto front is to the true Pareto front. This is important for scenarios where

the true Pareto front cannot be efficiently computed, but where multiple candidate empirical

Pareto fronts are available for comparison — simply put, the one with the largest hypervolume is

best. Figure 3.4 illustrates this concept.

3.3.2 Multi-Objective Bayesian Optimization

Bayesian optimization (BO) [Moč75] is a strategy for sequential decision making useful for op-

timizing expensive-to-evaluate black-box objective functions, and has become increasingly rele-

vant inmachine learning due to its success in optimizingmodel hyperparameters [SLA12; Jen+17].
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Figure 3.4: Left: Hyperparameter settings that correspond to Pareto optimal points in the privacy–

utility plane. Right: The empirical privacy–utility Pareto front corresponding to the hyperpa-

rameter settings’ privacy and utility oracle evaluations. The grey shaded area represents the

estimated Pareto front’s dominated region from which its hypervolume is computed. The blue

curve represents the mechanism’s true (but unknown) underlying privacy–utility Pareto front.

In its standard form, BO is used to estimate a minimum of an objective function f(λ) on some

subset Λ ⊆ Rp
of a Euclidean space by generating a sequence of evaluations of the objective at

locations λ1, . . . , λk. Each point in this sequence is generated by building a surrogate model of the

objective function using prior evaluations of the objective function, then applying a prespecified

criterion to select a new location λk+1 based on the surrogate model. In the single-objective case,

a common choice is to select the location that, in expectation under the surrogate model, gives

the best improvement to the current estimated minimum.

When used inmulti-objective optimization problemswhere a single pointmay not exist which

minimizes all objective functions simultaneously, BO aims to estimate a Pareto front using a

minimal number of evaluations. This makes multi-objective BO a clear candidate to help achieve

our goal of estimating the privacy–utility Pareto front in a practical way. Although in this chapter

we only work with two objective functions, we detail here the general case of minimizing p

objectives f1, . . . , fp simultaneously. This generalization can be used, for instance, to introduce

the running time of the mechanism as a third objective to be traded off against privacy and utility.
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3.3.2.1 Standard Bayesian Optimization Loop

At a high level, BO works as follows. Let λ1, . . . , λk be a set of locations in Λ, and let V =

{v1, . . . , vk} be the set such that each vi ∈ Rp
is the vector of objective evaluations (f1(λi), . . . , fp(λi)).

The following is then repeatedly iterated over until a budget to collect new locations has been

exhausted.

1. Fit a surrogate model of the objectives f1(λ) . . . , fp(λ) using the available evaluations E =

{(λi, vi)}ki=1. The standard approach is to use a Gaussian Process (GP) [RW05].

2. For each objective fj , calculate the predictive distribution over λ ∈ Λ using the surrogate

model. If GPs are used, the predictive distribution of each output can be fully characterized

by their meanmj(λ) and variance s
2
j(λ) functions, which can be computed in closed form.

3. Use the posterior distribution of the surrogatemodel to form an acquisition functionα(λ; I),

where I represents the evaluations E and the GP posterior conditioned on E.

4. Collect the next evaluation point λk+1 at the (numerically estimated) global maximum of

α(λ; I).

There are two key aspects of any BO method: (1) the surrogate model of the objectives, and

(2) the acquisition function α(λ; I). In this chapter, we use two independent GPs as the surrogate

models, one for each objective
21
. We now provide a detailed overview of the acquisition functions

that we are interested in for estimating Pareto fronts.

Acquisition Function with Pareto Front Hypervolume To collect new points when esti-

mating a Pareto front, we define an acquisition function α(λ; I) using the hypervolume measure

(Section 3.3.1). The acquisition function’s purpose is to select a location which will most improve

the current estimated Pareto front’s hypervolume.

21
Surrogate model generalizations that utilize multi-output GPs [ARL12] are possible, and are a promising direc-

tion for future work.
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Such an acquisition function is designed as follows. Let PF(V) be the Pareto front computed

with the objective evaluations in I , and let v̄ ∈ Rp
be a chosen anti-ideal point. First, we define

the change in hypervolume given a new point v ∈ Rp
:

∆PF(v) = HV(PF(V ∪ {v}))− HV(PF(V)).

This quantity is positive only if v lies in the set Γ̃ of points non-dominated by PF(V). There-

fore, the probability of improvement (PoI) over the current Pareto front when selecting a new

hyperparameter λ can be computed using the GP surrogate models trained on I as follows:

PoI(λ) = Pr[(f1(λ), . . . , fp(λ)) ∈ Γ̃ | I]

=

∫
v∈Γ̃

p∏
j=1

ϕj(λ; vj)dvj ,

where ϕj(λ; ·) is the predictive Gaussian density for fj with mean mj(λ) and variance s2j(λ).

The PoI(λ) function accounts for the probability that a given λ ∈ Λ has to improve the Pareto

front, and it can be used as a criterion to select new points. However, in this chapter, we opt to

use an enhanced variant of PoI due to its superior computational and practical properties: the

hypervolume probability of improvement (HVPoI) [CDD14b]. The HVPoI is given by

α(λ; I) = ∆PF(m(λ)) · PoI(λ) , (3.1)

wherem(λ) = (m1(λ), . . . ,mp(λ)). This acquisition function weighs the probability of improv-

ing the Pareto front with a measure of how much improvement is expected (estimated using

the GP surrogate models). The HVPoI has been shown to work well in practice, and efficient

implementations have recently been published [Knu+17].
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3.3.3 Defining DPareto

Our proposedmethod to estimate privacy–utility Pareto fronts of hyperparameterized DPmecha-

nisms, DPareto, utilizes these recent advances in practicalmulti-objective BO [CDD14a; Knu+17].

We present DPareto in Algorithm 3.2, and it works as follows. Initially, DPareto is provided

with a small set E of k0 randomly sampled hyperparameters and their corresponding privacy

and utility oracle evaluations. DPareto then selects k new hyperparameters iteratively in the

following steps. First, it fits GP models to transformed evaluations in E (we describe what these

transformations are shortly). It then maximizes the HVPoI acquisition function to obtain a new

hyperparameter setting and corresponding privacy and utility oracle evaluations. The newhyper-

parameter setting and oracle evaluations are then added into E, and the process repeats. Once the

k new evaluations have been collected, DPareto returns the empirical Pareto front constructed

from the full set of privacy and utility oracle evaluations.

Algorithm 3.2 DPareto

Input
• Λ: Hyperparameter space.

• Pδ,UD: Privacy and utility oracles.

• v̄: Anti-ideal point.

• k0: Number of initial random evaluations to collect.

• k: Number of new points to collect with BO.

Body
1: Initialize evaluation set E = ∅.
2: for i = 1, . . . , k0 do
3: Let λi be a sample from a random distribution over Λ.
4: Let vi be the oracle evaluations (Pδ(λi), 1− UD(λi)).
5: Append (λi, vi) to evaluation set E.
6: end for
7: for i = k0 + 1, . . . , k0 + k do
8: Fit GPs to transformed privacy and utility evaluations using E.
9: Let λi be the argmax of the HVPoI acquisition function with anti-ideal point v̄.
10: Let vi be the oracle evaluations (Pδ(λi), 1− UD(λi)).
11: Append (λi, vi) to evaluation set E.
12: end for
13: Return: Pareto front PF({v | (λ, v) ∈ E}).
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The output domains for the privacy and utility oracles may not be well-modeled by a GP,

which models outputs on the entire real line. For instance, the output domain for the privacy or-

acle is [0,+∞]. The output domain for the utility oracle depends on the chosen measure of utility.

A common choice of utility oracle for ML tasks is accuracy, which has output domain [0, 1]. Thus,

neither the privacy nor utility oracles are well-modeled by a GP as is. Therefore, in both cases, we

transform the outputs so that we are modeling a GP in the transformed space
22
. For privacy, we

use a simple log transform. For accuracy, we use a logit transform logit(x) = log(x)− log(1−x).

With this, both oracles have transformed output domain [−∞,+∞]. Although it is possible to

learn the transformation using Warped GP [SGR04], which has the advantage of having both

the covariance matrix and the nonlinear transformation learned simultaneously under the same

probabilistic framework, we choose to use fixed transformations for simplicity and efficiency.

With the exception of the transformations related to the privacy and utility oracles, nothing

about DPareto as described in Algorithm 3.2 is, by design, specific to differential privacy. In

Section 3.6, we briefly describe modifications to DPareto that may improve its performance by

incorporating aspects specific to differential privacy.

To increase adoption of DPareto and to enable others to more easily build on it, we have

publicly released the code for its implementation and experiments under an open-source license
23
.

3.3.4 Two Illustrative Examples: Revisited

We revisit the examples discussed in Section 3.2.2 to concretely illustrate how the components

of DPareto work together to estimate the privacy–utility Pareto front, and how the estimated

Pareto front compares to the true Pareto front.

22
Depending on the exact privacy and utility values observed, the GPs may be able to model the oracles reasonably

well without transformation. In this case, we hypothesize that DPareto would have similar performance compared

to if the transformation had been performed. However, transforming the observed values more closely matches the

GPs’ foundational assumptions a priori, so we expect the corresponding learned GPs to generally be a better fit when

incorporating these transformations.

23
https://github.com/amzn/differential-privacy-bayesian-optimization
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3.3.4.1 Private Logistic Regression

For the logistic regression example, we initialize the GP models with k0 = 250 random hyper-

parameter pairs (γi, σi). γi takes values in [10−4, 100] and σi takes values in [10−1, 101], both

sampled uniformly on a logarithmic scale. The privacy and mean utility of the trained models

corresponding to each sample are computed, and GPs are fit to these values as surrogate models

for each oracle.

Figure 3.5 shows the results of the surrogate model evaluations and oracle evaluations, as

well as the true Pareto front and DPareto’s estimated Pareto front. The predicted means of these

surrogate models are shown in the top row of the figure. Comparing directly to the oracles’ true

values in Figure 3.2, we observe that the surrogate models have modeled them well in the high

σ and γ regions, but are still learning the low regions. The bottom-left of Figure 3.5 shows the

exact Pareto front of the problem, along with the output values of the initial sample and the

corresponding empirical Pareto front. The empirical Pareto front lies almost exactly on the true

one, except in the extremely-high privacy region (ϵ < 10−2). This indicates that the selection of

random points (γi, σi) was already quite good outside of this region.

The goal of DPareto is to select new points in the input domain whose outputs will bring

the empirical front closer to the true one. This is the purpose of the acquisition function; the

bottom-right of the figure shows the HVPoI acquisition function evaluated over all (γi, σi) pairs.

The acquisition function’s maximizer, marked with a star, is used as the next location to evaluate

the oracles. Given the current surrogate models, the HVPoI seems to be making a sensible choice;

i.e., it is selecting a point where ϵ and classification error are both predicted to have relatively

low values, looking to improve the upper-left region of the Pareto front.

3.3.4.2 Sparse Vector Technique

For the sparse vector technique example, we initialize the GP models with k0 = 250 random

hyperparameter pairs (Ci, bi). The Ci values are sampled uniformly in the interval [1, 30], and
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Figure 3.5: Top: Mean predictions of the privacy (ϵ) and the utility (classification error) oracles

using their respective GP models in the private logistic regression example. The locations of the

k0 = 250 sampled points are plotted in white. Bottom left: Empirical and true Pareto fronts.

Bottom right: HVPoI and the selected next location.
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the bi values are sampled uniformly in the interval [10−2, 102] on a logarithmic scale. The privacy

and utility values are computed for each of the samples, andGPs are fit to these values as surrogate

models for each oracle.

Figure 3.6 shows the results of the surrogate model evaluations and oracle evaluations, as

well as the true Pareto front and DPareto’s estimated Pareto front. The predicted means of

these surrogate models are shown in the top row of the figure. We observe that both surrogate

models have modeled their oracles reasonably well, comparing directly to the oracles’ true values

in Figure 3.3. The bottom-left of Figure 3.6 shows the exact Pareto front of the problem, along

with the output values of the initial sample and the corresponding empirical Pareto front. The

empirical Pareto front lies very close to the true one, which indicates that the selection of points

(Ci, bi) is already quite good.

DPareto uses the HVPoI function to select new points in the input domain whose outputs

will bring the empirical Pareto front closer to the true one. The bottom-right of the figure shows

this function evaluated over all (Ci, bi) pairs. The function’s maximizer, marked with a star, is

used as the next location to evaluate the oracles. Given the current surrogate models, the HVPoI

appears to be making a sensible choice: selecting a point where ϵ is predicted to have a medium

value and 1− F1 is predicted to have a low value, looking to improve the gap in the lower-right

corner of the Pareto front.

3.4 Evaluating DPareto

With DPareto defined, our final contribution is to answer the question of how well DPareto

performs. We first define how we measure and contextualize the utility of DPareto. We then

provide the high-level details of the experimental setup for estimating the Pareto fronts of a

variety of machine learning models trained with DP stochastic optimization mechanisms. Finally,

we detail the concrete empirical evaluations and discuss their results.
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HVPoI and the selected next location.
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3.4.1 Utility Measures and Baseline Methods

For any privacy–utility Pareto front estimationmethod, wemeasure its performance in twoways:

the method’s effectiveness and its efficiency. We define a method’s effectiveness as how accurately

it is able to estimate the DP mechanism’s true Pareto front using a fixed number of oracle evalua-

tions. Specifically, we measure this accuracy by evaluating the hypervolume of the method’s es-

timated privacy–utility Pareto front (Section 3.3.1). Analogously, we define a method’s efficiency

as howmany hyperparameter evaluations are needed to yield an estimated privacy–utility Pareto

front which achieves a fixed level of accuracy.

To understand how effectively and efficiently DPareto estimates privacy–utility Pareto fronts,

we must put its utility into context by comparing against the utility of baseline methods. Con-

textualizing DPareto’s utility is particularly important for the application of differentially pri-

vate deep learning, since obtaining a true Pareto front is computationally prohibitive. Because

no prior methods exist to estimate the privacy–utility Pareto fronts of hyperparameterized DP

mechanisms, we define two simple baseline methods: random search and grid search. These re-

spectively function by evaluating the privacy and utility oracles for hyperparameters that had

been randomly sampled from a distribution or selected according to a predefined grid. We utilize

two distributions for random search: the uniform distribution, and a distribution carefully con-

structed to attempt to induce the most favorable results for random search. The latter distribution

was designed by reviewing literature [Aba+16; McM+18] in addition to our experience training

these models. In each of our experiments, random search using this carefully constructed distri-

bution outperforms random search with the uniform distribution as well as grid search. Thus, for

brevity, we subsequently only discuss random search with the carefully constructed distribution,

and omit the others.
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3.4.2 Evaluation Setup

Our goal is to evaluate DPareto’s effectiveness and efficiency for estimating privacy–utility

Pareto fronts on a variety of machine learning tasks. Towards this, we concretely define each

of the requisite components; i.e., the datasets used to train the models, the optimization domains

of the hyperparameters, and the DP stochastic optimization mechanisms.

3.4.2.1 Datasets

Weanalyze two classic problems: binary classification of incomewith theADULT dataset [Koh+96],

andmulticlass classification of handwritten digits with theMNIST dataset [LeC+98]. The ADULT

dataset is composed of 123 binary demographic features, with the task of predicting whether each

individual in the dataset has income above or below $50k. It has 40k points in the training set and

1.6k points in the test set. The MNIST dataset is composed of 28×28 gray-scale images, each rep-

resenting a single digit 0-9, with the task of predicting the digit. It has 60k images in the training

set and 10k in the test set.

3.4.2.2 Models

For the ADULT dataset, we consider logistic regression (LogReg) and linear support vector ma-

chine (SVM) models. With these, we evaluate the privacy–utility trade-off induced by the choice

of model and DP optimization mechanism (DP-SGD vs. DP-Adam, detailed subsequently in Sec-

tion 3.4.2.4). When using the MNIST dataset, we fix the DP optimization mechanism as DP-SGD,

but use a more expressive multilayer perceptron (MLP) model and evaluate the privacy–utility

trade-off induced by the choice of network architecture. The first model, MLP1, has a single hid-

den layer with 1000 neurons. This is the samemodel architecture as used by Abadi et al. [Aba+16],

but without a differentially private PCA dimensionality reduction pre-step. The second model,

MLP2, has two hidden layers with 128 and 64 units. In both cases, the models use ReLU activa-

tions.
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Algorithm Dataset Epochs (T ) Lot Size (m) Learning Rate (η) Noise Variance (σ2
) Clipping Norm (L)

LogReg+SGD ADULT [1, 64] [8, 512]
[
5×10−4, 5×10−2

]
[0.1, 16] [0.1, 4]

LogReg+Adam ADULT [1, 64] [8, 512]
[
5×10−4, 5×10−2

]
[0.1, 16] [0.1, 4]

SVM+SGD ADULT [1, 64] [8, 512]
[
5×10−4, 5×10−2

]
[0.1, 16] [0.1, 4]

MLP1+SGD MNIST [1, 400] [16, 4000]
[
1×10−3, 5×10−1

]
[0.1, 16] [0.1, 12]

MLP2+SGD MNIST [1, 400] [16, 4000]
[
1×10−3, 5×10−1

]
[0.1, 16] [0.1, 12]

Table 3.1: Optimization domains used in each of the DPareto experimental evaluations.

Hyperparameter Distribution Parameters Type Accept Range

Epochs Uniform a = 1, b = 64 Integer [1, 64]
Lot Size Normal µ = 128, σ = 64 Integer [8, 512]
Learning Rate Shifted Exp. λ = 10, shift = 1×10−3

Real [1×10−3, 1×10−1]
Noise Variance Shifted Exp. λ = 1×10−1, shift = 1×10−1

Real [1×10−1, 16]
Clipping Norm Shifted Exp. λ = 1×10−1, shift = 1×10−1

Real [1×10−1, 4]

Table 3.2: ADULT sampling distributions for random search.

3.4.2.3 Hyperparameter Optimization Domain

Table 3.1 defines the optimization domain Λ for each of the different experiments, which all

hyperparameter selectionmethods (i.e., DPareto, random search, and grid search) operatewithin.

For experiments on both the ADULT and MNIST datasets, we have carefully constructed

distributions for random search in order to generate as favorable results for it as possible. We

constructed these distributions by reviewing literature (namely Abadi et al. [Aba+16] and McMa-

han et al. [McM+18]) in addition to our experience from training these DP models. The precise

distributions are detailed in Tables 3.2 and 3.3.

The Pareto fronts generated by random search using these constructed distributions have

significantly greater hypervolume than those yielded by random search using the naive strategy

of sampling from the uniform distribution, thereby justifying the choice of these distributions.

Hyperparameter Distribution Parameters Type Accept Range

Epochs Uniform a = 1, b = 400 Integer [1, 400]
Lot Size Normal µ = 800, σ = 800 Integer [16, 4000]
Learning Rate Shifted Exp. λ = 10, shift = 1×10−3

Real [1×10−3, 5×10−1]
Noise Variance Shifted Exp. λ = 5×10−1, shift = 1×10−1

Real [1×10−1, 16]
Clipping Norm Shifted Exp. λ = 5×10−1, shift = 1×10−1

Real [1×10−1, 12]

Table 3.3: MNIST sampling distributions for random search.
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3.4.2.4 DP Stochastic Optimization Mechanisms

We perform experiments using privatized variants of two popular optimization algorithms, SGD

and Adam. SGD proceeds iteratively, where on each iteration, it estimates the gradient using

a single example (or small batch of examples) picked uniformly at random (without replace-

ment) [Bot10]. Adam [KB15] extends SGD by computing adaptive estimates of lower-order mo-

ments.

As a privatized version of SGD, we use DP-SGD, detailed in Algorithm 3.3. DP-SGD is a

mini-batched SGD implementation with clipped gradients and Gaussian noise. This mechanism

is similar to Abadi et al.’s [Aba+16], but differs in two ways. First, it utilizes sampling without

replacement to generate fixed-size mini-batches, rather than using Poisson sampling with a fixed

probability which generates variable-sized mini-batches. Using fixed-size mini-batches is a more

natural approach, and more closely aligns with standard practice in non-private ML. Second,

for the privacy oracle, we use the moments accountant implementation of Wang et al. [WBK19]

which supports sampling without replacement. In Algorithm 3.3, the function clipL(v) acts as

the identity if ∥v∥2 ≤ L, and otherwise returns (L/∥v∥2)v. This clipping operation ensures that

∥clipL(v)∥2 ≤ L so that the ℓ2-sensitivity of any gradient to a change in one datapoint in d is

always bounded by L/m.

We then design the DP-Adam mechanism in the same way that the non-private Adam opti-

mizer is extended from SGD. At the time of this work, this was the first known implementation

of DP-Adam; now, this optimizer is a standard part of DP ML libraries. Our privatized version of

Adam is given in Algorithm 3.4, and uses the same gradient perturbation technique as DP-SGD.

Here the notation g̃⊙2 denotes the vector obtained by squaring each coordinate of g̃. DP-Adam

uses three numerical constants that are not present in DP-SGD: κ, β1 and β2. To simplify our

empirical evaluations, we fix those constants to the defaults suggested in Kingma and Ba [KB15].
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Algorithm 3.3 DP-SGD

Input
• D: dataset of n points (d1, . . . , dn).

Hyperparameters
• η: Learning rate.

• m: Mini-batch size.

• T : Number of epochs.

• σ2
: Gaussian noise variance.

• L: Clipping norm bound.

Body
1: Initialize w = 0.
2: for t = 1, . . . , T do
3: for k = 1, . . . , n/m do
4: Let S ⊂ [n] be a size m uniformly random sample without replacement.

5: Compute ḡ = 1
m

∑
i∈S clipL(∇ℓ(di, w)).

6: Let g̃ = ḡ + 2L
m
Y , where Y ∼ Gaussian(0, σ2I).

7: Update w = w − ηg̃.
8: end for
9: end for
10: Return: w.

129



Algorithm 3.4 DP-Adam

Input
• D: dataset of n points (d1, . . . , dn).

Hyperparameters
• η: Learning rate.

• m: Mini-batch size.

• T : Number of epochs.

• σ2
: Gaussian noise variance.

• L: Clipping norm bound.

Body
1: Fix κ = 10−8, β1 = 0.9, and β2 = 0.999.
2: Initialize w = 0, µ = 0, ν = 0, and i = 0.
3: for t = 1, . . . , T do
4: for k = 1, . . . , n/m do
5: Let S ⊂ [n] be a size m uniformly random sample without replacement.

6: Compute ḡ = 1
m

∑
i∈S clipL(∇ℓ(di, w)).

7: Let g̃ = ḡ + 2L
m
Y , where Y ∼ Gaussian(0, σ2I).

8: Update µ = β1µ+ (1− β1)g̃, ν = β2ν + (1− β2)g̃
⊙2
, and i = i+ 1.

9: De-bias µ̂ = µ/(1− βi
1) and ν̂ = ν/(1− βi

2).
10: Update w = w − ηµ̂/(

√
ν̂ + κ).

11: end for
12: end for
13: Return: w.
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3.4.3 Empirical Evaluations

With the experimental setup in place, we empirically evaluate DPareto’s effectiveness and effi-

ciency on a variety of machine learning tasks. To begin, we explicitly compare DPareto’s perfor-

mance to that of the random search and grid search baseline methods. We follow this comparison

with a discussion on the computational overhead incurred by DPareto. We then briefly examine

DPareto’s variability across multiple executions. Finally, we demonstrate DPareto’s versatility

by using it as an analysis tool to quantify the performance of various combinations of models

and DP optimizers. Taken together, our findings in this section show that DPareto is a prac-

tically useful method for quantifying the privacy–utility trade-offs of hyperparameterized DP

mechanisms.

3.4.3.1 Comparing DPareto to Baseline Methods

We compare DPareto’s utility first against the random search baseline, then against the grid

search baseline.

DPareto vs. Random Search We evaluate DPareto and the random search method on several

combinations of models, DP optimizers, and datasets, plotting the results in Figure 3.7.

In this figure, the top two plots show how the Pareto fronts’ hypervolumes expand as new

points are sampled. In nearly every experiment, DPareto yields a greater hypervolume than ran-

dom search — a direct indicator that DPareto has estimated the Pareto front to a higher degree

of accuracy. This can be seen by examining the bottom left plot of the figure, which directly

shows both methods’ estimated Pareto fronts of the MLP2 model. Specifically, while the ran-

dom search method only marginally improves over its initial random points, DPareto is able to

thoroughly explore the high-privacy regime (i.e., small ϵ). The bottom right plot of the figure com-

pares DPareto’s Pareto front given 256 sampled points against the random search method given

significantly more sampled points, 1500. While both approaches yield similar Pareto fronts, the

efficiency of DPareto is particularly highlighted by the points that are not on the front. Namely,
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Model + DP-Optimizer Mean Difference 95% C.I.

LogReg+SGD 0.158 (0.053, 0.264)∗

LogReg+Adam 0.439 (0.272, 0.607)∗

SVM+SGD 0.282 (0.161, 0.402)∗

Table 3.4: Mean hypervolume differences between DPareto and 19 independent repetitions of

256 iterations of random search. Two-sided 95% confidence intervals (C.I.) for these differences,

as well as t-tests for the mean, are included. Asterisks indicate significance at the p < 0.001 level.

nearly all the points chosen by DPareto are close to its estimated Pareto front, whereas many

points chosen by random search are nowhere near its estimated Pareto front.

To formally establish the utility benefit of DPareto over random search, we perform a statisti-

cal analysis using experiments on the ADULT dataset. Specifically, we perform 19 new repetitions

of the random search method, with each repetition being budgeted 256 sampled points (to match

the number of DPareto points). For each repetition, we compute the resulting Pareto front’s hy-

pervolume, then compute the hypervolume difference to DPareto’s Pareto front. Under the mild

assumption that DPareto is deterministic
24
, we then compute the two-sided confidence intervals

for these differences. We also compute the t-statistic for these differences being zero, finding

that all are highly significant (p < 0.001). These results are shown in Table 3.4. This demon-

strates that the observed differences between both methods’ Pareto fronts are in fact statistically

significant.

DPareto vs. Grid Search The random search baseline method generally outperforms the grid

search baseline method, so we minimize our exposition of grid search results in this chapter.

However, for completeness, we highlight one experiment using grid search with two different

grid sizes — both of which perform significantly worse than DPareto.

For this experiment, we define hyperparameter ranges as the limiting values from Table 3.2’s

distribution. We first evaluate a grid size of 3 values per hyperparamater; this corresponds to 243

24
This assumption is not strictly true, since DPareto is seeded with a random set of points. However, running an

equal number of repetitions of DPareto would be an extremely costly exercise with results expected to be nearly

identical.
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Figure 3.7: Top: Hypervolumes of the Pareto fronts computed by the various models, optimizers,

and architectures on the ADULT and MNIST datasets (respectively) by both DPareto (marked

BO) and random search (marked RS). Bottom left: Pareto fronts learned for the MLP2 architecture

on the MNIST dataset with DPareto and random search, including the shared points they were

both initialized with. Bottom right: ADULT dataset DPareto sampled points and corresponding

Pareto front compared with the larger set of random search points and corresponding Pareto

front.
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Figure 3.8: Grid search experiment results (marked GS) compared with DPareto’s Bayesian op-

timization approach (marked BO).

total hyperparamater settings, which is approximately the same amount that DPareto is bud-

geted. We then evaluate a grid size of 4 values per hyperparameter; this corresponds to 1024

hyperparameter settings, which is approximately 4 times more than DPareto is budgeted. As

can be seen in Figure 3.8, DPareto outperforms grid search even when significantly more hyper-

parameter settings are evaluated.

3.4.3.2 Computational Overhead of DPareto

Although the empirical evaluations show that DPareto produces high-quality Pareto fronts more

efficiently than the random search and grid search baselines, we must examine the computational

cost it incurs. Namely, we are interested in the running time of DPareto, excluding the oracle

evaluation time (i.e., the model training time and moments accountant runtime).

Towards this, for experiments on both datasets, we measure the time that DPareto takes to

(a) initialize the GP models with the 16 random points, plus (b) iteratively select the subsequent

256 hyperparameter settings and incorporate their corresponding privacy and utility results into
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the GP models. For both the ADULT and MNIST datasets, despite the differences in their hyper-

parameter domains and their observed privacy and utility values, DPareto’s overhead remains

fairly consistent at approximately 45 seconds of total wall-clock time. This represents a negligible

fraction of the total Pareto front computation time for either dataset. Specifically, it accounts for

less than 0.1% of the total time for estimating the ADULT Pareto fronts, and less than 0.01% for

the MNIST Pareto fronts. Thus, we conclude that DPareto’s negligible overhead is more than

offset by its improved Pareto fronts.

We remark that although the overhead is negligible, DPareto does have a shortcoming rel-

ative to traditional methods: it is an inherently sequential process which cannot be easily par-

allelized. Random search and grid search, on the other hand, can be trivially parallelized to an

arbitrarily high degree which is bounded only by one’s computational resources. Improving upon

this facet of DPareto is beyond the scope of this chapter; however, it is a promising direction for

future work.

3.4.3.3 DPareto’s Variability

Understanding the variability of DPareto — i.e., the extent to which its estimated Pareto fronts

change between independent executions — is important for practical deployments. In order to

understand its variability, recall that in our experiments, we implement the utility oracle by re-

peatedly running mechanismMλ with a fixed choice of hyperparameters, and then reporting

the average utility across runs. However, using these same runs, we can also take the best and

worst utilities observed for each choice of hyperparameters.

Figure 3.9 displays the estimated Pareto fronts from considering the best and worst runs in

addition to the Pareto front obtained from the average over runs. We find that the variability of

the estimated Pareto front is small, typically less than 3 percentage points in classification error.

Moreover, we generally observe higher variability in the high-privacy regime (i.e., small ϵ). This

is expected, since greater privacy is achieved by increasing the variance of the noise added to
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Figure 3.9: Variability of DPareto’s estimated Pareto fronts across models and optimizers on the

ADULT dataset.

the model’s gradients during training. These types of plots can be useful to decision makers who

need to understand what amount of variability they should expect in practice from DPareto.

3.4.3.4 DPareto’s Versatility

One of the primary purposes of these empirical evaluations is to demonstrate the versatility of

DPareto as an analysis tool, by using it to compare multiple approaches to the same problem. In

Figure 3.10, the left plot shows Pareto fronts of the ADULT dataset for multiple optimizers (DP-

SGD and DP-Adam) as well as multiple models (logistic regression and SVM), and the right plot

shows Pareto fronts of the MNIST dataset for different model architectures (MLP1 and MLP2).

We find that on the ADULT dataset, the logistic regression model optimized using DP-Adam

is nearly always better than the other model/optimizer combinations. We also find that on the

MNIST dataset, although both architectures perform similarly in the low-privacy regime, the

MLP2 architecture significantly outperforms the MLP1 architecture in the high-privacy regime.

These findings demonstrate that analysts and practitioners can use DPareto to efficiently create

similar Pareto fronts in order to perform privacy–utility trade-off comparisons.
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Figure 3.10: Left: Pareto fronts for combinations of models and optimizers on the ADULT dataset.

Right: Pareto fronts for different MLP architectures on the MNIST dataset.

3.5 Related Works

While this chapter presents the first examination of DP mechanisms’ privacy–utility trade-offs

using multi-objective optimization and Pareto fronts, there are several works on adjacent topics

that merit discussion.

Non-private optimization DPareto is built upon an active area of multi-objective optimiza-

tion research on efficiently computing Pareto fronts without regards to privacy. DPareto’s point-

selection process alignswith Couckuyt et al. [CDD14b], but other approachesmay provide promis-

ing alternatives for improving DPareto. For example, Zuluaga et al. [ZKP16] propose an acquisi-

tion function that focuses on a uniform approximation of the Pareto front instead of a hypervol-

ume based acquisition function. However, their technique does not apply out-of-the-box to the

problems that we consider because it assumes a discrete hyperparameter space.

Several aspects of this chapter are related to recent work on single-objective optimization.

For non-private single-objective optimization, there is an abundance of recent work in machine

learning on hyperparameter selection, using BO [Kle+17; Gol+17] or other methods [Li+17] to

maximize a model’s utility.
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U.S. Decennial Census The threat model and outputs of the DPareto algorithm are closely

aligned with the methodology used by the U.S. Census Bureau to choose the privacy parame-

ter ϵ for their deployment of DP to release data from the 2020 decennial census. In particular,

the Census Bureau combines a graphical approach to represent the privacy–utility trade-off for

their application [GAP18] together with economic theory to pick a particular point to balance

the trade-off [AS19a]. Their graphical approach works with Pareto fronts identical to the ones

computed by our algorithm, which they construct using data from previous censuses [Abo18a].

Although the specifics of their hyperparameter tuning are not entirely clear, we infer that their

chosen hyperparameters are primarily related to post-processing steps, and therefore only affect

utility
25
.

ML and DP Recently, several related problems at the intersection of machine learning and

differential privacy have emerged regarding hyperparameter selection and utility.

One such problem is how to perform the hyperparameter tuning process in a privacy-preserving

way. Kusner et al. [Kus+15] and subsequently Smith et al. [Smi+18] use BO to find near-optimal

hyperparameter settings for a given model while preserving the privacy of the data during the

utility evaluation stage. Aside from the single-objective focus of this setting, our case is sig-

nificantly different in that we are primarily interested in training the models with DP, not in

protecting the privacy of the data used to evaluate an already-trained model.

Another problem is how to choose utility-maximizing hyperparameters when privately train-

ing models. When privacy is independent of the hyperparameters, this reduces to the non-private

hyperparameter optimization task. However, two variants of this question do not have this triv-

ial reduction. The first variant inverts the stated objective to study the problem of maximizing

privacy given constraints on the final utility [Lig+17; Ge+19]. The second variant, closely align-

ing with this chapter’s setting, studies the problem of choosing utility-maximizing, but privacy-

dependent, hyperparameters. This is particularly challenging, since the privacy’s dependence on

25
Or, in the case of invariant forcing, the chosen hyperparameters only impact privacy in ways which are not

quantifiable within standard DP theory.
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the hyperparameters may be non-analytical and computationally expensive to determine. Ap-

proaches to this variant have been studied [MA18; Vee18]; however, the proposed strategies are

1) based on heuristics, 2) only applicable to the differentially private SGD problem, and 3) do not

provide a computationally efficient way to find the Pareto optimal points for the privacy–utility

trade-off of a given model. Wu et al. [Wu+17] provide a practical analysis-backed approach to

privately training utility-maximizing models (again, for the case of SGDwith a fixed privacy con-

straint), but hyperparameter optimization is naively performed using grid-search. By contrast,

this chapter provides a computationally efficient way to directly search for Pareto optimal points

for the privacy–utility trade-off of arbitrary hyperparameterized algorithms.

Another important problem at the intersection of DP and ML revolves around the DP “se-

lection” or “maximization” problem [CHS14]. This problem asks how to choose an item (from

a predefined universe) to maximize a data-dependent function while still protecting the privacy

of that data. For this problem, Liu and Talwar [LT19] provided a way to choose hyperparam-

eters that approximately maximize the utility of a given differentially private model in a way

that protects the privacy of both the training and test data sets. Based on this, Mohapatra et

al. [Moh+22] then improved on this work by using a Renyi DP [Mir17] analysis. Subsequently,

Papernot and Steinke [PS] followed by Koskela and Kulkarni [KK23] built on these works to

devise novel strategies for performing DP hyperparameter tuning with low privacy and compu-

tational costs. However, this only optimizes utility with fixed privacy — it does not address our

problem of directly optimizing for the selection of hyperparameters that generate privacy–utility

points which fall on the Pareto front.

The final problem is regarding data-driven algorithm configuration. Specifically, the problem

is how to tune the hyperparameters of combinatorial optimization algorithms while maintaining

DP [BDV18]. The setting considered in Balcan et al. [BDV18] assumes there is an underlying

distribution of problem instances, and a sample from this distribution is used to select hyperpa-

rameters that will have good computational performance on future problem instances sampled
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from the same distribution. In this case, the authors consider a threat model where the whole

sample of problem instances used to tune the algorithm needs to be protected. A similar problem

of data-driven algorithm selection has been considered, where the problem is to choose the best

algorithm to accomplish a given task while maintaining the privacy of the data used [Kot+17].

For both, only the utility objective is being optimized, assuming a fixed constraint on the privacy.

3.6 Future Directions

For both DPareto and the more general problem of quantifying the privacy–utility trade-off of

DP mechanisms, there are several interesting directions for future work on both the theoretical

and applied sides. We discuss three select open problems whose solutions would significantly

enhance the effectiveness of DPareto (or of any future privacy–utility Pareto front estimation

methods).

The first open problem is on the privacy side. As designed, DPareto is a system to non-

privately estimate the Pareto front of DP mechanisms. However, estimating the Pareto front

requires evaluating the utility oracle many times, each time computing over potentially sensitive

user data; e.g., in order to train the underlying model on the training data, and then to compute

the utility of the trained model on the test data. One challenging open problem is how to tightly

quantify the DP guarantee of the Pareto front estimation method itself. This involves analyzing

the privacy guarantees for compositions of the utility oracle. Naively applying DP composition

theorems immediately yields conservative bounds on the privacy for both the training and test

sets of user data used by the utility oracle (assuming a small amount of calibrated noise is added

to the utility oracle’s output). This follows from observing that individual privacy–utility points

evaluated by DPareto enjoy the DP guarantees computed by the privacy oracle, and the rest of

the algorithm only involves post-processing and sequential composition. However, these bounds

would be prohibitively large for practical use. We expect that a more advanced analysis could

yield significantly tighter guarantees since for each point we are only releasing its utility values
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rather than releasing the trained models themselves. For a decision maker, tightly quantifying

DPareto’s privacy guarantee would provide an end-to-end privacy guarantee for their entire

workflow, and allow the Pareto front to be made publicly available.

The second open problem is on the Bayesian optimization side. Recall that the estimated

Pareto fronts contain only the privacy–utility values of the trained models, along with the cor-

responding hyperparameters that induced them. In practice, a decision maker may be interested

in finding a hyperparameter setting that induces a particular point on the estimated Pareto front

but which was not previously explicitly evaluated by DPareto. Currently, there is no method

to find such hyperparameters. The only recourse is to select the hyperparameters of the nearest

desirable privacy–utility point that DPareto did explicitly evaluate. The open problem here is

how to design an improved (but still computationally efficient) method to extract this information

from DPareto’s underlying Gaussian processes.

The final open problem is how to improve the performance of DPareto by modifying it to be

specific to differential privacy (or even specific to differentially private deep learning), rather than

directly leveraging general techniques in multi-objective Bayesian optimization. One straightfor-

ward starting point is to more carefully construct the Gaussian processes that model the privacy

and utility oracles in two mutually compatible ways. The first modification is to redesign the

privacy oracle’s GP to utilize the fact that the privacy oracle, unlike the utility oracle, is noiseless.

This would eliminate uncertainty at each evaluated hyperparameter setting’s measured privacy

value, but would retain the Bayesian optimization’s required uncertainty across the unevaluated

hyperparameter settings. The second modification is that rather than using independent GPs for

both oracles, instead use a single multi-output GP [ARL+12] encoded with the known inverse

relationship between privacy and optimal utility. We hypothesize that carefully incorporating

both changes will noticeably improve DPareto’s effectiveness and efficiency.
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3.A Chapter Appendix

Deferred Sparse Vector Technique Privacy Proof

Here, we detail the proof for our SVT variant’s (Algorithm 3.1) DP guarantee, which we use to

implement the privacy oracle P0 in the sparse vector technique illustrative example. The proof

is based on observing that our implementation is just a simple re-parameterization of Lyu et

al.’s mechanism [LSL17, Alg. 7], where some of the parameters have been fixed up-front. For

concreteness, we reproduce their mechanism as Algorithm 3.5. The result then follows from a

direct application of Theorem 4 of their work, which shows that Algorithm 3.5 is (ϵ1 + ϵ2, 0)-DP.

Algorithm 3.5 Sparse Vector Technique of Lyu et al. [LSL17, Alg. 7], with ϵ3 = 0

Input
• D: Sensitive dataset.

• q1, . . . , qm: m binary queries.

• ∆: Sensitivity bound for the queries.

Hyperparameters
• T1, . . . , Tm: Thresholds for each query.

• C : Upper-bound on number of answers.

• ϵ1, ϵ2: Differential privacy parameters.

Body
1: Let c = 0 and w = (⊥, . . . ,⊥) ∈ {⊥,⊤}m
2: Let ρ ∼ Laplace(∆/ϵ1), where b1 = b/(1 + (2C)1/3).
3: for i ∈ [m] do
4: Let ν ∼ Laplace(2C∆/ϵ2).
5: if qi(D) + ν ≥ Ti + ρ then
6: Set wi = ⊤ and c = c+ 1.
7: if c ≥ C , break
8: end if
9: end for
10: Return: w.

Comparing Algorithm 3.5 with our SVT implementation in Algorithm 3.1, we see that they

are virtually the same mechanisms, but where we have fixed ∆ = 1, Ti = 1/2, ε1 = 1/b1 and
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ε2 = 2C/b2. Thus, by expanding the definitions of b1 and b2 as a function of b and C , we can

verify that Algorithm 3.1 is (ϵ, 0)-DP with

ϵ = ϵ1 + ϵ2

=
1

b1
+

2C

b2

=
1 + (2C)1/3

b
+

(2C)2/3(1 + 2C)1/3

b

=
(1 + (2C)1/3)(1 + (2C)2/3)

b
.
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Chapter 4

Pushing the Boundaries of Private, Large-Scale Query

Answering

In order to address the final high-level challenge of this thesis (Section 1.2), we focus in this

chapter on the open question of efficiently and effectively answering large numbers of queries

while ensuring DP
26
. We begin with an overview of the problem, describing it precisely and

providing a detailed motivating example. We then separately analyze the problem in two distinct

settings. In both settings, we ground our work in the state-of-the-art DP mechanism for large-

scale query answering: the Relaxed Adaptive Projection (RAP) mechanism [Ayd+21].

The first setting is a classic setting in the DP literature where all queries are known to the

mechanism in advance. Within this setting, we identify challenges in the RAPmechanism’s origi-

nal analysis, then overcome themwith an enhanced implementation and analysis. We then extend

the capabilities of the RAP mechanism to be able to answer a more general and powerful class of

queries (r-of-k thresholds) than previously considered. Empirically evaluating this class, we find

that the mechanism is able to answer orders of magnitude larger sets of queries than prior works

and does so quickly and with high utility.

We then define a second setting motivated by real-world considerations and whose definition

is inspired by work in the field of machine learning. In this new setting, a mechanism is only

given partial knowledge of queries that will be posed in the future, and it is expected to answer

26
This chapter is based on work in our publication [AK23].
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these future queries with high utility. We formally define this setting and how to measure a

mechanism’s utility within it. We then comprehensively empirically evaluate our extended RAP

mechanism’s utility within this new setting. From this evaluation, we find that even with weak

partial knowledge of the future queries, themechanism is able to efficiently and effectively answer

arbitrary queries posed in the future. Taken together, the results from these two settings advance

the state of the art on differentially private large-scale query answering.

4.1 Overview

Many data analysis and machine learning algorithms, at their core, involve answering statisti-

cal queries. Statistical queries are the class of queries that answer the question: “What fraction of

entries in a given dataset have a particular propertyP ?” Because of their ubiquity, developing dif-

ferentially private mechanisms to answer statistical queries effectively has been one of the most

well-studied problems in DP [DN03; Blu+05; Dwo+06b; BLR08; Dwo+09; DRV10; RR10; HR10;

HLM12; GRU12]. Early DP research primarily focused on designing mechanisms to answer spe-

cific, individual statistical queries in an interactive setting. In that setting, queries are posed and

answered one at a time with the goal of answering each query with minimal error while ensuring

privacy. However, most practical data-driven algorithms do not pose only a single query. Instead,

they pose a large number of queries, referred to as a query workload. When a query workload is

available in advance (i.e., prespecified), it is possible to design DP mechanisms that take advan-

tage of the relationships between the queries to achieve higher utility relative to answering the

individual queries independently. In this chapter, we address the problem of privately answering

a large number of queries by answering the following high-level research question.

In the two following settings, to what extent are differentially private mechanisms able

to answer a large number of statistical queries efficiently and with low error?

Setting 1: All queries are prespecified; i.e., known in advance.
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Setting 2: Only partial knowledge of the queries is available in advance.

Motivating Example

A motivating data analysis example for this chapter is the American Community Survey (ACS),

a demographics survey program conducted by the U.S. Census Bureau [Bur16]. The ACS regu-

larly gathers information such as ancestry, citizenship, educational attainment, income, language

proficiency, migration, disability, employment, and housing characteristics. The Census Bureau

aggregates the individual ACS responses (microdata), then generates population estimates which

are available to the public via online data tools. Themost popular tool, Public UseMicrodata Sam-

ple (PUMS), enables researchers to generate custom cross-tabulations of responses to the ACS

questions. To protect the privacy of the ACS respondents, PUMS data are sampled, anonymized,

and only available for sufficiently populous geographic regions. However, studies have found

that the ad hoc anonymization techniques used are not entirely sufficient to protect the privacy

of individual respondents (e.g., via re-identification attacks) [Abo18b; CRB22]. As a result, the

Census Bureau has announced plans to incorporate differential privacy into the American Com-

munity Survey and declared that it is researching “a new fully-synthetic data product” with a

development period ending in 2025 [Rod21; Dai22].

One promising and active direction within DP research is synthetic data generation [MSM19;

Vie+20; LVW21]. The hope is that once a synthetic dataset is generated via a differentially pri-

vate mechanism, researchers and analysts can pose an arbitrary number of queries against the

synthetic dataset without increasing the privacy risk to those who contributed the original under-

lying data. DP synthetic data generation mechanisms seek to strike a balance between distilling

the information in the underlying dataset most useful to analysts while ensuring the underlying

dataset’s privacy. Thus, to maximize the eventual usefulness of the synthetic dataset, synthetic

data generation mechanisms must tailor the generated dataset to the specific class of downstream
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tasks (e.g., a particular class of queries) that analysts are most likely interested in. This is typi-

cally done by providing a set of queries (the query workload) to the DP mechanism so that the

mechanism can tailor the synthetic dataset to answer these queries (and ideally, to other similar

queries). Much of DP synthetic data research has focused on designing mechanisms to generate

synthetic data which can provide accurate answers (under a variety of metrics, most commonly

ℓ∞ error) to the subset of statistical queries known as k-way marginal queries [Bar+07; TUV12;

Gup+13; Cha+14; CKS18; MSM19; Vie+20; Nix+22]. Informally, a k-way marginal query answers

the question: “What fraction of people in the private dataset have all of the following k attributes:

...?” In this chapter, we focus on a strict generalization of k-way marginal queries known as r-

of-k threshold queries [Kea+87; Lit88; HW04; TUV12; Ull13; Ayd+21] under the ℓ∞ error metric.

Informally, r-of-k threshold queries answer the question: “What fraction of people in the private

dataset have at least r of the following k attributes: ...?”.

As a simplified example of where such queries can be used, we consider the scenario where

a social scientist is interested in using ACS data to determine what portion of a community has

a substandard quality of living. Suppose the scientist wants to examine the four following at-

tributes for each person in the community: is their income level below the poverty line, are they

unemployed, are they homeless, and do they have a low net worth? Clearly, a person having any

single attribute does not necessarily mean they have a substandard quality of living. Similarly, a

person does not need to have all four attributes to have a substandard quality of living. Thus, the

social scientist can formulate this as an r-of-k threshold query with r = 3, k = 4; i.e., a person

has a substandard quality of living if they have at least three of the four attributes.

This social scientist may have many such queries, and other researchers may have sets of

queries of their own that they wish to pose. Thus, a natural algorithm design question is: how

should the U.S. Census Bureau answer everyone’s queries with low error while still ensuring the

ACS respondents’ privacy? The simplest option is to use a portion of the DP budget to individ-

ually answer each query, independent of all other queries. This would likely be unsatisfactory
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utility-wise since it both limits how many queries can be answered and ignores any relationships

between queries (which would likely lead to a large ℓ∞ error over the set of answers). We posit

two potentially superior alternatives whose performance we will investigate.

1. One alternative is to collect a large group of queries and then use a state-of-the-art DP query

answering mechanism to answer them all simultaneously. This is an example of answering

queries in the “prespecified queries” setting (studied in Sections 4.3 and 4.4). With careful

DP mechanism design or selection, this alternative typically leads to lower ℓ∞ error over

the set of answers than answering each query independently.

2. A separate alternative is along the lines of synthetic data generation and is applicable to

the Census Bureau if queries that have been posed in the past are in some sense similar

to queries that analysts will likely pose in the future. Concretely, we hypothesize that the

Census Bureau can leverage those past queries in conjunction with a state-of-the-art DP

synthetic data generation mechanism to generate a synthetic dataset privately. Researchers

can then pose their own queries directly against the synthetic dataset without needing to go

through the Census Bureau or worry about the original ACS respondents’ privacy. This is

an example of answering queries in the “partial knowledge” setting (studied in Section 4.5),

as knowledge from the past is used to inform the future. If the queries posed in the past are

indeed similar to the queries posed in the future, then a synthetic dataset generated using

the past queries has the potential to answer the future queries with low ℓ∞ error.

4.1.1 Prior Work on Large-Scale Query Answering

To address answering a large number of queries under differential privacy in an improvedmanner

over the naive interactive approach, two separate lines of research previously emerged: synthetic

data generation and workload evaluation. We describe both lines of research, then briefly intro-

duce the state-of-the-art mechanism we build upon in the thesis.
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Synthetic Data Generation: One line of research studies the problem of answering a large

number of queries via private synthetic dataset generation. In differentially private synthetic

dataset generation, a DP mechanism is applied to the original, sensitive data in order to gen-

erate a synthetic dataset. The synthetic dataset’s purpose is then to directly answer arbitrary

queries posed in the future without the further need to account for potential privacy leakage

or manage differential privacy budgets. In this setting, aside from knowing the general query

class, no knowledge is typically assumed about which specific queries will be posed in the future.

The proven advantage of this approach is that DP synthetic datasets are theoretically capable of

accurately answering an exponentially larger number of queries relative to the aforementioned

interactive approach [BLR08; GRU12; Che+12; HRS12; Gup+13]. However, actually generating

a synthetic dataset that accurately answers exponentially many queries has been proven in-

tractable [Dwo+09; UV11; Ull16], even for simple subclasses of statistical queries (e.g., 2-way

marginals). Thus, a significant recent research focus has been on designing efficient mechanisms

for privately generating synthetic datasets which accurately answer increasingly large numbers

of queries [Gab+14; MSM19; Vie+20; LVW21].

Workload Evaluation: A separate line of research focuses on the problem of answering a

large number of queries when the concrete query workload is prespecified, i.e., when all queries

are known in advance. Pre-specifying the query workload enables researchers to design DPmech-

anisms to take advantage of the workload’s structure in order to answer the queries with lower

error relative to the interactive approach or the private synthetic dataset approach. Early re-

search in this setting produced mechanisms with optimal or near-optimal error guarantees but

with impractical (typically exponential) running times for even modestly sized real-world prob-

lems [HR10; HLM12; GRU12; Li+15]. As a result, recent research has focused on designing com-

putationally efficient mechanisms to answer prespecified workloads with low error on real-world

datasets [McK+18; SS18; Ayd+21], at the cost of losing the strong theoretical utility guarantees

149



of prior works and thus necessitating thorough empirical utility evaluations to demonstrate their

value.

Relaxed Adaptive ProjectionMechanism: Our approach for evaluating suitable (i.e., efficient

and accurate) mechanisms in both our settings of interest builds on Aydore et al.’s [Ayd+21]

recently introduced Relaxed Adaptive Projection (RAP) mechanism. RAP is the current state-of-

the-art mechanism for answering large sets of statistical queries in the setting where the query

workload is prespecified. At a high level, RAP works by:

1. Initializing a synthetic datasetD′ in a relaxed data space (e.g., by relaxing a binary feature

in the original dataset to the interval [0, 1] in the synthetic dataset).

2. For each original prespecified query, specifying a surrogate query that is equivalent to the

original in the unrelaxed data space but that is differentiable everywhere in the relaxed

space.

3. Iteratively applying an Adaptive Selection (AS) step followed by a Relaxed Projection (RP)

step. In the AS step, adaptivity is introduced to allow the subset of queries with the highest

error on D′ to be privately selected. In the RP step, these selected queries’ surrogates are

used to optimize D′ using standard gradient-based optimization techniques.

4. Finally, answering the original set of queries using the optimized synthetic dataset D′.

For k-waymarginals, a canonical subclass of statistical queries [Bar+07; TUV12; Gup+13; Cha+14;

CKS18] (formally defined in Section 4.2), Aydore et al. theoretically and empirically demonstrate

that RAP outperforms prior state-of-the-art mechanisms. Theoretically, they provide an “oracle

efficient” (i.e., assuming the optimization procedure achieves a global minimum) utility result

characterizing RAP’s error, showing that RAP achieves strictly lower error than the previous prac-

tical state-of-the-art mechanism [Vie+20]. Experimentally, they compare the RAP mechanism
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with prior state-of-the-art mechanisms [MSM19; Vie+20], demonstrating that RAP answers pre-

specified sets of queries with lower error.

4.1.2 Our Contributions

To answer this chapter’s high-level research question, we make the following contributions in

both settings of interest. In the classic setting where all queries are known in advance, our con-

tributions are as follows.

• We overcome memory hurdles in RAP’s initial implementation by reimplementing RAP in

a memory-efficient way, thus enabling the evaluation of significantly larger query spaces

than previously considered.

• We utilize the new implementation to enhance RAP’s evaluation, evaluating RAP on larger

query spaces (answering approximately 50x more queries) than in its initial evaluation and

conclusively determining the role that adaptivity from the AS step plays in RAP’s utility.

• We extend RAP’s applicability by expanding the class of queries it evaluates, finding that it

can efficiently and effectively answer more complex query classes than previously consid-

ered.

As a realistic intermediate setting between the two classic extremes of no-knowledge vs. full-

knowledge of which queries will be posed, we propose a new setting where partial knowledge of

the future queries is available. In this new setting, our contributions are as follows.

• We concretely define this setting and how to measure utility within it. Specifically, we

assume that a set of historical queries was independently drawn from some unknown dis-

tribution TH and that the mechanism has access to these historical queries. In the future,

the mechanism will be posed an arbitrary number of queries sampled from a distribution
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TF , which may be related to TH . We define the utility of the mechanism in terms of its gen-

eralization error, i.e., its expected error across these future queries drawn from TF having

been given access to the historical queries from TH .

• We assess how suitable RAP is for this new setting by formulating query distributions ac-

cording to real-world phenomena, then empirically evaluating RAP’s generalization error

on these distributions. When future queries are drawn from the same distribution as the

historical queries that RAP used to learn its synthetic dataset (i.e., TH = TF ), we find that re-

gardless of the distribution, RAP is able to achieve high utility. When the future queries dis-

tribution diverges from the historical queries distribution, we find that RAP’s utility slowly

and gracefully declines.

These contributions, in both the prespecified queries setting and the partial knowledge setting,

demonstrate the practical value of RAP and improve RAP’s adoptability for real-world uses.

The remainder of this chapter is structured as follows. Beginning in Section 4.2, we provide a

comprehensive overview of the relevant technical terminology and definitions and detail the RAP

mechanism that we build upon. In Section 4.3, we perform a focused but thorough reproducibility

study on Aydore et al.’s [Ayd+21] evaluation of the RAP mechanism. To accomplish this, we first

improve RAP’s implementation from the ground up and then leverage the new implementation to

enhance RAP’s initial evaluation in order to strengthen our comprehension of its utility. Building

on the improved RAP implementation, in Section 4.4 we expand the class of queries that RAP is

able to accommodate. We then empirically evaluate RAP on this new class of queries, finding

that it is able to efficiently answer large numbers of queries from this class while maintaining

high utility. In Section 4.5, we concretely define our newly proposed setting where a mechanism

is given partial knowledge of the queries that will be posed in the future. We define how we

assess a mechanism’s performance in this setting and detail the distinct new ways that RAP’s

performance may be affected in this new setting. We then empirically evaluate RAP in this setting,
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finding that even with only partial knowledge of which queries will be posed in the future, RAP

is able to efficiently and effectively achieve high utility. Finally, in Section 4.6, in addition to the

related works already discussed in this section, we describe other important, relevant works and

the future directions they motivate pertaining to our work in this chapter.

4.2 Technical Preliminaries

In this section, we define the requisite technical terminology. The fundamental concepts intro-

duced here were primarily presented in prior works [Gab+14; Vie+20; Ayd+21]. We restate them

to aid in understanding and contextualizing Aydore et al.’s RAP mechanism, which we use to an-

swer this chapter’s research questions. Towards this, we first define statistical queries and their

subclasses that are relevant to this work. We then define what it means to be a “surrogate” query

for one of these statistical queries. Next, we describe what workloads are and how we use them.

Finally, we detail the RAP mechanism that we build on in this work. Because this chapter is

notationally dense, Table 4.1 serves as a reference for the various symbols we define.

4.2.1 Statistical Queries and their Subclasses

The general class of queries we are interested in (which the RAP mechanism can, in theory, be

used to answer) are statistical queries.

Definition 4.2.1 (Statistical query). A statistical query qϕ is parameterized by a predicate ϕ :

X → {0, 1}; i.e., the predicate takes as input a record x of a dataset D and outputs a boolean

value. The statistical query is then defined as the normalized count of the predicate over all n

records of the input dataset, i.e.,

qϕ(D) =

∑
x∈D ϕ(x)

n
.

Given a vector of m statistical queries Q, we define Q(D) = (a1, . . . , am) to be the answers to

each of the queries on D; i.e., ai = qϕi
(D) for all i ∈ [m].
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Symbol Usage

ϵ, δ Differential privacy parameters.

X , d, Xi Data spaceX for any possible record consisting of d features. Xi is the domain

of feature i.
D, n Dataset D containing n records from X .
qϕ Statistical query q defined by the mean of the predicate ϕ over a set of records

from X .
Q, m, a Q is a vector ofm queries, and a represents the answers to the vector of queries

over the dataset D such that Q(D) = a = (a1, . . . , am).
W Threshold workloadW which defines the concrete query vector Q.

qϕS,y,k
k-way marginal query specified by set S of k features and values y for each

feature.

qϕS,y,1
1-of-k threshold query specified by set S of k features and values y for each

feature.

⋆ qϕS,y,r
r-of-k threshold query specified by set S of k features and values y for each

feature, and threshold r.
Y , d′ Data space Y consisting of d′ features, which is a relaxation of the one-hot

encoded X data space.

D′, n′ Synthetic dataset D′ containing n′ features from Y .
q̂ϕ̂ Surrogate query q̂ defined by the mean of the function ϕ̂ over a set of records

from Y .
Q̂ Vector of surrogate queries.

q̂ϕ̂T
Product query, specified by a set of features T .

⋆ q̂ϕ̂T+,T−
Generalized product query, specified by a set of positive and negated features

T+ and T−.
⋆ q̂ϕ̂T,r

Polynomial threshold query, specified by a set of features T and integer r.

⋆ errP Measure of a mechanism’s present error, used when all queries are known in

advance.

⋆ errF Measure of mechanism’s future error, used when only partial knowledge of

queries is available in advance.

⋆ F , T Distribution T from which thresholds in a random workload are sampled i.i.d.

to form a corresponding vector of consistent queries. The threshold distribu-

tion may be formed by a distribution over features F .
RAP, AS, RP RelaxedAdaptive Projectionmechanism, with its primary subcomponents: the

Adaptive Selection and Relaxed Projection mechanisms.

RNM Report Noisy Max mechanism, used by the ASmechanism to select high-error

queries.

GM Gaussian noise-addition mechanism, used as both a baseline mechanism and

a subcomponent of RAP to privately answer queries directly.

⋆ OSAS Oneshot Adaptive Selectionmechanism, introduced as more efficient a drop-in

replacement for RAP’s AS mechanism.

All-0 Baseline mechanism that returns only 0 for all queries.

Table 4.1: Comprehensive list of notation. Lines marked with a ⋆ indicate new concepts not found

in [Ayd+21].
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Wenow formally define the specific subclasses of statistical queries thatwe reference through-

out this chapter. Let the space for each record in the dataset consist of d categorical features

X = (X1 × · · · × Xd), where each Xi is the discrete domain of feature i, and let xi ∈ Xi denote

the value of feature i of record x ∈ X . Prior works have primarily evaluated the subclass of

statistical queries known as k-way marginals (also known as k-way contingency tables or k-way

conjunctions) [Bar+07; TUV12; Gup+13; Cha+14; CKS18; MSM19; Vie+20], and typically focused

specifically on 3-way and 5-way marginals.

Definition 4.2.2 (k-way marginal). A k-way marginal query qϕS,y,k
is a statistical query whose

predicate ϕS,y,k is specified by a set S of k features f1 ̸= · · · ̸= fk ∈ [d] and a target y ∈

(Xf1 × · · · × Xfk), given by

ϕS,y,k(x) =


1 if xf1 = y1 ∧ · · · ∧ xfk = yk

0 otherwise.

Informally, a row satisfies the predicate if all of its values match the target on the specified fea-

tures. A k-way marginal is then specified by a set S of k features, and consists of all (Πk
i=1|Xfi|)

k-way marginal queries with feature set S.

1-of-k thresholds (also known as k-way disjunctions) were briefly evaluated in [Ayd+21], and

are defined similarly.

Definition 4.2.3 (1-of-k threshold). A 1-of-k threshold query qϕS,y,1
is a statistical query whose

predicate ϕS,y,1 is specified by a set S of k features f1 ̸= · · · ̸= fk ∈ [d] and a target y ∈

(Xf1 × · · · × Xfk), given by

ϕS,y,1(x) =


1 if xf1 = y1 ∨ · · · ∨ xfk = yk

0 otherwise.
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Informally, a row satisfies the predicate if any of its values match the target on the specified

features. A 1-of-k threshold is then specified by a set S of k features, and consists of all (Πk
i=1|Xfi|)

1-of-k threshold queries with feature set S.

In this work, we evaluate a generalization of both of these subclasses of statistical queries:

r-of-k thresholds [Kea+87; Lit88; HW04; TUV12; Ull13; Ayd+21].

Definition 4.2.4 (r-of-k threshold). An r-of-k threshold query qϕS,y,r
is a statistical query whose

predicate ϕS,y,r is specified by a positive integer r ≤ k, a set S of k features f1 ̸= · · · ≠ fk ∈ [d]27,

and a target y ∈ (Xf1 × · · · × Xfk). The predicate is then given by

ϕS,y,r(x) = 1

[
k∑

i=1

1[xfi = yi] ≥ r

]
.

Informally, a row satisfies the predicate if at least r of its values match the target on the specified

features. An r-of-k threshold is then specified by positive integer r ≤ k and a set S of k features,

and consists of all (Πk
i=1|Xfi |) r-of-k threshold queries with feature set S. This class generalizes

k-way marginals when r = k and generalizes 1-of-k thresholds when r = 1.

The expressiveness of r-of-k thresholds makes them more useful than k-way marginals, as

they enable more nuanced queries to be easily and intuitively posed. This is particularly useful

when the implications behind categories of distinct features in a dataset have some overlap. For

instance, in the motivating U.S. Census example, there were several features with categories in-

dicative of a substandard quality of living. Requiring someone to belong to all of the categories (as

a k-way marginal requires) is overly restrictive, and r-of-k thresholds allow this restrictiveness

to be relaxed.

Remark. We say that any r-of-k threshold query (and, by extension, any k-way marginal query

or 1-of-k threshold query) specified by r, k, S, and y is consistent with the r-of-k threshold speci-

fied by r, k, and S. That is, we often refer to an r-of-k threshold simply as the features it specifies,

27
Although requiring each fi to be distinct is not strictly necessary for the techniques in this chapter to hold, we

subsequently discuss in Section 4.2.2 why this is a reasonable requirement in this setting.
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whereas a query consistent with that r-of-k threshold is one which specifies concrete target values

corresponding to those features.

4.2.2 Threshold Workloads

It was standard in prior works to evaluateworkloads of k-waymarginals [Li+15; McK+18; MSM19;

Vie+20; Liu+21; LVW21]. A k-waymarginal workloadW is specified by a set of k-waymarginals,

W = {S1, . . . , S|W |} such that each Si ∈ W is a set of k features. This workload W defines a

concrete query vector Q, which consists of all queries consistent with each marginal in W . Q is

therefore commonly referred to as the query workload. For example, a workload may be specified

by the following two 3-way marginals,W = {(1, 2, 5), (2, 3, 7)}, and would therefore define the

query vector Q containing all marginal queries consistent with those feature sets. The number

of queries in this query vector would then be |Q| = |X1||X2||X5|+ |X2||X3||X7|.

Since our work extends the class of queries from marginals to r-of-k thresholds, rather than

a workload being specified by a set of marginals, we say that a set of r-of-k thresholds specifies

a workload W . W similarly defines the concrete query vector Q which consists of all r-of-k

threshold queries consistent with each r-of-k threshold in W . For example, when r = 1 and

k = 3, we can specify a similar workload as beforeW = {(1, 2, 5), (2, 3, 7)}which defines a query

workload Q containing the same number of consistent queries as before (|Q| = |X1||X2||X5| +

|X2||X3||X7|) — however, here each q ∈ Q is a 1-of-3 threshold query instead of a 3-way marginal

query. We use threshold workloads (and their corresponding vector of all consistent queries) for

the empirical evaluations of our mechanisms.

In Definition 4.2.4 for r-of-k thresholds, each fi was required to be distinct. For individual

queries, removing this requirement does not significantly change the mechanisms or techniques

in this chapter. However, since we answer all consistent queries of a given threshold in this chap-

ter, this requirement does not diminish the richness of the query class. Specifically, if one seeks

to pose an r-of-k threshold query containing non-distinct features, its answer can be computed
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directly from the answers to all consistent queries of the same threshold but with distinct fea-

tures. This holds true in the opposite direction as well. Thus, both definitions are equivalent in

this sense when answering all consistent queries over a given set of features.

4.2.3 Surrogate Queries

Aydore et al. [Ayd+21] introduce surrogate queries to replace the original statistical queries with

queries that are similar but that are amenable to first-order optimization methods. Thanks to sig-

nificant recent advances in hardware and software tooling, these first-order optimizationmethods

can enable highly efficient learning of synthetic datasets.

Definition 4.2.5 (Surrogate Query). A surrogate query q̂ϕ̂ is parameterized by function ϕ̂ : Y →

R; i.e., the function takes as input a record x ∈ Y from a dataset D′, and outputs a real value.

The surrogate query is then defined as the mean of the function over all n′ records of the input

dataset, i.e.,

q̂ϕ̂(D
′) =

∑
x∈D′ ϕ̂(x)

n′
.

The only distinctions between the definitions of a surrogate query with ϕ̂ and a statistical query

with ϕ are that ϕ̂’s domain may be different than ϕ’s, and ϕ̂’s codomain is the entire real line

instead of {0, 1}.

We let Q̂ denote a corresponding vector of surrogate queries for a given query vector Q.

Notation of Feature Spaces: Recall the original feature space X = (X1 × · · · × Xd), where

each Xi is the discrete domain of feature i, and let ti be the number of distinct values/categories

that Xi can attain. A one-hot encoding
28 h(x) of any record x results in a binary vector {0, 1}d′ ,

where d′ =
∑d

i=1 ti. Just as in [Ayd+21], we are interested in constructing a synthetic dataset

that lies in a continuous relaxation of this binary feature space. A natural relaxation of {0, 1}d′

28
A one-hot encoding of a categorical feature Xi with ti categories is a mapping from each category to a unique

1× ti binary vector that has exactly one non-zero coordinate.
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is [0, 1]d
′
, so we adopt Y = [0, 1]d

′
as the relaxed space for the remainder of this chapter.

We are interested in surrogate queries that are equivalent extended differentiable queries (EEDQs)

as defined in [Ayd+21].

Definition 4.2.6 (Equivalent Extended Differentiable Query). Let qϕ be an arbitrary statistical

query parameterized by ϕ : X → {0, 1}, fix a one-hot encoding over each of the features, and let

q̂ϕ̂ be a surrogate query parameterized by ϕ̂ : Y → R. We say that q̂ϕ̂ is an equivalent extended

differentiable query to qϕ if it satisfies the following properties:

1. ϕ̂ is differentiable over Y . I.e., for every x ∈ Y , ∇ϕ̂(x) is defined.

2. ϕ̂ agrees with ϕ on every possible database record that results from the fixed one-hot encod-

ing. I.e., for every x ∈ X where h(x) represents the one-hot encoding of x: ϕ(x) = ϕ̂(h(x)).

As an illustrative example of an EEDQ, we define the class of EEDQs used by Aydore et al. for

k-way marginals. Concretely, [Ayd+21] defines the class of surrogate queries known as product

queries and shows how to construct an EEDQ product query for any given k-way marginal.

Definition 4.2.7 (Product Query). Given a subset of features T ⊆ [d′], the product query q̂ϕ̂T
is a

surrogate query parameterized by the function ϕ̂T which is defined as ϕ̂T (x) =
∏

i∈T xi.

Lemma 4.2.8 ([Ayd+21], Lemma 3.3). Every k-way marginal query qϕS,y,k
has an EEDQ in the

class of product queries. By construction, every ϕ̂T satisfies the requirement that it is defined

over the entire relaxed space Y and is differentiable. Additionally, for every qϕS,y,k
, there is a

corresponding product query q̂ϕ̂T
with |T | = k such that for every x ∈ X : ϕS,y,k(x) = ϕ̂T (h(x)).

We construct this T in the following straightforward way: for every i ∈ S, we include in T the

coordinate corresponding to yi ∈ Xfi .

4.2.4 Relaxed Adaptive Projection (RAP) Mechanism

We now describe the details of the RAPmechanism, including how it works and its DP guarantee.
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Algorithm 4.1 formally defines the RAPmechanism. The input to the mechanism is the dataset

D of sensitive user data, the desired size of the synthetic dataset n′, privacy parameters (ϵ, δ),

a vector of m statistical queries Q and their corresponding surrogate queries Q̂, adaptiveness

parameters T,K ∈ [m]. The final outputs are (1) an n′-row synthetic dataset, and (2) estimates

to the original queries Q obtained by evaluating their surrogate queries on the synthetic dataset;

i.e., RAP outputs (1) D′ and (2) Q̂(D′).

Algorithm 4.1 Relaxed Adaptive Projection (RAP) Mechanism

Input
• D: Dataset of n records from space X .
• Q, Q̂: A vector ofm statistical queries and their corresponding surrogate queries.

• n′,Y : Desired size of synthetic dataset with records from relaxed space Y .
• T : Number of rounds of adaptiveness.

• K : Number of queries to select per round of adaptiveness.

• ϵ, δ: Differential privacy parameters.

Body

1: Let ρ = ϵ+ 2
(
log(1

δ
)−

√
log(1

δ
)(ϵ+ log(1

δ
))
)
.

2: Independently uniformly randomly initialize D′ ∈ Yn′
.

3: if T = 1, K = m then
4: for i = 1, 2, . . . ,m do
5: Let ãi = GM(D, qi, ρ/m).
6: end for
7: Let D′ = RP(Q̂, ã, D′).
8: else
9: Let Qs = ∅.
10: for t = 1, 2, . . . , T do
11: Let Qs, ã = AS(D,D′, Q, Q̂, Qs, K, ρ

T
).

12: Let Q̂s = (q̂i : qi ∈ Qs).
13: Let D′ = RP(D′, Q̂s, ã).
14: end for
15: end if
16: Return: Final synthetic dataset D′ and answers Q̂(D′).

Non-Adaptive Case: In its most basic form (T = 1, K = m), RAP employs no adaptivity.

Here, the vector ofm queries is first privately answered directly on the sensitive datasetD using
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Algorithm 4.2 Adaptive Selection (AS) Mechanism

Input
• D,D′: Dataset of n records from space X , and synthetic dataset of n′ records from relaxed

space Y .
• Q, Q̂: Vector of all statistical queries and their corresponding surrogate queries.

• Qs: Set of already selected queries.

• K : Number of new queries to select.

• ρ: Differential privacy parameter.

Body
1: for j = 1, 2, . . . , K do
2: Let ∆ = (|q̂i(D)− q̂i(D

′)| : qi ∈ Q \Qs).
3: Let i = RNM(∆, ρ

2K
)

4: Add qi into Qs.

5: Let ãi = GM(D, qi,
ρ
2K

).
6: end for
7: Return: Qs and ã = (ãi : qi ∈ Qs).

Algorithm 4.3 Relaxed Projection (RP) Mechanism

Input
• D′: Synthetic dataset of n′ records from relaxed space Y .
• Q̂: Vector of surrogate queries.

• ã: Vector of “true” privatized answers corresponding to each surrogate query.

Body
1: Use any iterative differentiable optimization technique (SGD, Adam, etc.) to attempt to find:

D′ = argmin
D′∈Yn′

||Q̂(D′)− ã||22,

applying the Sparsemax transformation to every feature encoding in each row ofD′ between
each iteration.

2: Return: D′.
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the Gaussian Mechanism (GM) (Section 1.1.2). These answers, along with the vector of surrogate

queries Q̂ and a uniformly randomly initialized n′-row synthetic dataset D′, are passed to the

Relaxed Projection mechanism (RP, Algorithm 4.3). The RP subcomponent utilizes an iterative

gradient-based optimization procedure (such as SGD) to update D′ by minimizing the disparity

between the surrogate queries’ answers onD′ and the privatized answers on the sensitive dataset

D. After each iterative update, the Sparsemax transformation is applied to every feature encoding

in each row ofD′. Once the procedure reaches a stopping condition (e.g., Q̂(D′) is within a certain

tolerance of ã, or a certain number of iterations have occurred), RP returns the finalD′. RAP then

returns D′ along with estimated answers to the query workload Q̂(D′).

Adaptive Case: In the more general case where K < m and T · K ≤ m, RAP proceeds in T

rounds. In each round t, RAP uses the Adaptive Selection (AS) mechanism to selectK new queries

to add to the setQs. AS iteratively uses the Gumbel noise Report Noisy Max (RNM) [Che+16; DR19]

and GM mechanisms together to privately choose the K queries that have the largest disparity

between their current answers on the synthetic dataset D′ and their answers on the true dataset

D. The RP mechanism is then applied only to this subset Qs containing t · K queries in each

round, rather than applying RP in 1 round on the full vector of privately answered queries Q

(as in the non-adaptive case). Aydore et al. claim that the aim of incorporating this adaptivity is

to expend the privacy budget more wisely by selectively answering only the T · K ≪ m total

worst-performing queries.

Concentrated Differential Privacy

To state and understand RAP’s DP guarantee, wemust briefly discuss zero-concentrated differential

privacy (zCDP) [BS16].
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Although RAP is given ϵ and δ values as input and, in turn, guarantees (ϵ, δ)-DP, its DP sub-

mechanisms and corresponding privacy proof are in terms of ρ-zCDP. Zero-concentrated differ-

ential privacy is a different definition of DP that provides a weaker guarantee than pure DP but

a stronger guarantee than approximate DP. It is formally defined as follows.

Definition 4.2.9 ([BS16]). A randomized mechanismM is ρ-zCDP if and only if for all neighbor-

ing input datasets D and D′ that differ in precisely one individual’s data and for all α ∈ (1,∞),

the following inequality is satisfied:

Dα(M(D)||M(D′)) ≤ ρα,

where Dα(·||·) is the α-Rényi divergence.

We omit a detailed discussion of zCDP in this thesis, referring an interested reader to Bun

and Steinke’s work [BS16] for more details. However, its value for RAP comes from the fact that

zCDP has better composition properties than approximate DP, yet RAP’s final composed zCDP

guarantee (parameterized by ρ) can be converted back into an (ϵ, δ)-DP guarantee. This converted

(ϵ, δ)-DP guarantee is better than if standard composition results of approximate DP had been

directly applied.

We now informally state these composition and conversion properties. zCDP’s composition

property ensures that if two mechanisms satisfy ρ1-zCDP and ρ2-zCDP, then a mechanism that

sequentially composes them satisfies ρ-zCDP with ρ = ρ1 + ρ2. zCDP’s conversion property

ensures that if a mechanism satisfies ρ-zCDP, then for any δ > 0, the mechanism also satisfies

(ϵ, δ)-DP with ϵ = ρ+ 2
√

ρ log(1/δ).

Finally, we define the two fundamental DP mechanisms used in RAP — GM and RNM — and

state their DP guarantees in terms of zCDP. The first mechanism is the Gaussian mechanism,

previously discussed in Section 1.1.2. For convenience, we redefine it here in terms of zCDP and

for the particular use case of answering a single statistical query.
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Definition 4.2.10. The Gaussian mechanism GM(D, qi, ρ) takes as input a dataset D ∈ X n
, a

statistical query qi, and a zCDP parameter ρ. It outputs ai = qi(D)+Z , whereZ ∼ Normal(0, σ2)

and σ2 = 1
2n2ρ

.

Lemma 4.2.11 ([BS16]). For any query qi and ρ > 0, the GM(D, qi, ρ) satisfies ρ-zCDP.

The second fundamental mechanism that RAP uses is the Gumbel noise Report Noisy Max

(RNM) mechanism.

Definition 4.2.12. The Report Noisy Max mechanism RNM(D,∆, ρ) takes as input a datasetD ∈

X n
, a vector of real values ∆, and a zCDP parameter ρ. It outputs the index of the highest noisy

value in ∆; i.e., i∗ = argmaxi ∆i + Zi, where each Zi ∼ Gumbel

(
1√

2ρ|D|2

)
.

Lemma 4.2.13 ([DR19]). For any real vector ∆ and ρ > 0, the RNM(D,∆, ρ) satisfies ρ-zCDP.

With these fundamental mechanisms and their zCDP guarantees defined, we are now able to

formally reproduce Aydore et al.’s original theorem and proof of RAP’s DP guarantee.

Theorem 4.2.14 ([Ayd+21]). For any class of queries and surrogate queries Q and Q̂, and for

any set of parameters n′, T , and K , the RAP mechanism satisfies (ϵ, δ)-DP.

Proof. First, consider the non-adaptive case where T = 1, K = m. Here, the sensitive dataset D

is only accessed viam invocations of the Gaussianmechanism, eachwith privacy ρ/m. Therefore,

by the composition property of zCDP, RAP satisfies ρ-zCDP. Thus, by our choice of ρ in line 1, we

conclude that RAP satisfies (ϵ, δ)-DP.

Next, assume T > 1. RAP executes T iterations of its loop, only accessing the sensitive dataset

D via the Adaptive Selection (AS) mechanism each iteration. Thus, we seek to prove that the

AS mechanism satisfies ρ/T -zCDP. Each invocation of the AS mechanism receives the privacy

parameter ρ′ = ρ/T as input and accesses the sensitive dataset via K invocations of RNM and

K invocations of GM. Each invocation of either mechanism ensures
ρ′

2K
-zCDP, and therefore by
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the composition property of zCDP, the total 2K mechanism invocations ensure ρ′-zCDP. Thus,

the AS mechanism satisfies ρ/T -zCDP. Leveraging zCDP’s composition property again, because

RAP invokes AS T times, RAP therefore satisfies ρ-zCDP. Finally, by our choice of ρ in line 1, we

conclude that RAP satisfies (ϵ, δ)-DP.

Remark (Restriction to r-of-k thresholds). r-of-k threshold queries are a subclass of a more

general class of statistical queries: arbitrary Boolean formulas over k atoms of the form xfi = yi.

As RAP can conceptually be used to answer arbitrary statistical queries, it follows that RAP can

be used to answer these k-restricted arbitrary Boolean formulas as well. In fact, we hypothesize

that RAPwould likely be able to answer queries from this class with high utility. However, in this

work, we restrict ourselves from generalizing beyond r-of-k thresholds to this more general class

for two reasons. The first reason is regarding our aforementioned evaluation of workloads. In

this more general query class, it is not entirely clear what the value is of evaluating all consistent

queries corresponding to the k features of an arbitrary Boolean formula, or whether that would

even be the most meaningful evaluation methodology for the query class. The second reason is

regarding performance. For a mechanism to be capable of evaluating this query class at a large

scale, particularly careful attentionwould need to be paid to designing a system that automatically

generates efficient EEDQs for any given Boolean formula. Thus, we leave generalizing beyond

r-of-k thresholds as an interesting direction for future work.

4.3 Enhancing RAP’s Evaluation

In this section, we address our first two contributions in the setting where all queries are pre-

specified: we strengthen and clarify our understanding of RAP’s utility by performing a thorough

reproducibility study on two important aspects of Aydore et al.’s evaluation of RAP. These two

aspects are:
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1. The benefit of RAP’s adaptive component relative to its non-adaptive component was un-

known. We determine and quantify this component’s utility benefit, finding that it is crucial

for enabling RAP to achieve high utility.

2. RAP was only ever evaluated on highly reduced portions of the query space. We instead

evaluate RAP’s utility across the entire query space, answering up to 50x more queries than

in its initial evaluation.

The first aspect is significant because it improves our understanding of how RAP’s adaptivity

parameters affect its utility and establishes whether RAP’s adaptive component is necessary in

order to achieve high utility. The second aspect is important because RAP’s initial evaluation on

highly reduced portions of the query space yielded potentially biased utility results. By instead

evaluating RAP across the entire query space, we establish RAP’s unbiased utility and determine

what impact reducing the query space has on RAP’s utility. In order to evaluate both aspects, we

had to reimplement RAP from the ground up to improve its efficiency for evaluating large sets of

prespecified queries. We then use the new implementation to evaluate both aspects, clarifying

the value of the RAP mechanism and thus improving its adoptability for practical uses.

To make the description of our improved evaluation precise, in Section 4.3.1, we define the

utility metric used by Aydore et al. and by the prior state-of-the-art mechanisms for answering

prespecified queries, which we also use in our evaluations. We then discuss in Section 4.3.2 the

details and implications of the two aspects of Aydore et al.’s initial evaluation of RAP that we are

improving upon. In Section 4.3.3, we detail the particular obstacle in RAP’s initial implementation

that prevents its use for our improved evaluation. To overcome this obstacle, we reimplemented

RAP from the ground up andmake its implementation publicly available
29
. Finally, in Section 4.3.4,

we describe how we use our improved implementation to perform our enhanced evaluation of

RAP.
29
https://github.com/bavent/large-scale-query-answering.
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Regarding the role of adaptivity in RAP, we not only find that it is crucial to achieving high

utility, we quantitatively measure how RAP’s adaptivity parameters (T and K) affect its utility.

This motivates new, more efficient search strategies to find optimal T andK values, thus reduc-

ing RAP’s computational burden and privacy cost in practice. Regarding evaluating RAP on the

full query space, we find that Aydore et al.’s initial evaluation of RAP on a reduced portion of the

query space likely underestimated RAP’s utility. This was due to their reduced query space having

less “sparsity” in the query answers (i.e., a larger portion of the queries they evaluated had non-0

answers). This finding motivates a new line of research on mechanisms for the separate cases of

when query answers are and are not sparse. Together, the improved RAP implementation com-

bined with the enhanced evaluation clarifies the value of the RAP mechanism and thus improves

RAP’s adoptability and usability in practice.

4.3.1 Measuring Utility of Prespecified Queries

We define the concrete utility measure used in prior works to evaluate DP mechanisms that

answer prespecified sets of statistical queries. Prior works in this setting measured the utility

of DP mechanisms in terms of a mechanism’s maximum error over the answers to all queries in

the prespecified query set [MSM19; Vie+20; LVW21; Ayd+21]. We refer to this measure of utility

as present utility, since it is the error on the set of presently available queries, and measure it in

terms of the negative of present error ; i.e., a mechanism with low present error has high present

utility and vice versa. This error measure is formally defined as follows.

Definition 4.3.1 (Present error). Let a = Q(D) = (a1, . . . , am) be the true answers to a given

query vectorQ on datasetD, and let ã = (ã1, . . . , ãm) bemechanismM ’s corresponding answers

to the query vector. Then errP is the present error of the mechanism, defined as errP (M,D,Q) =

EM(D) ∥a− ã∥∞, where the expectation is over the randomness of the mechanism.

We choose the ℓ∞ norm as the base metric for present error because of its use in Aydore

et al.’s evaluation of RAP and because it is the most popular norm utilized in the most closely
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related literature [MSM19; Vie+20; LVW21; Ayd+21]. However, other norms (e.g., ℓ1 and ℓ2) and

even error definitions may be equally valid in the prespecified queries setting depending on the

practical use case [Tao+21]. Although we do not empirically evaluate RAP on such alternative

definitions, investigating how the findings in this work change based on the error definition is

an excellent direction for future work.

To put this utility measure for RAP into context, we compare its present error against the

present error of the (ϵ, δ)-DP Gaussian mechanism GM mechanism (Section 1.1.2). This baseline

mechanism was chosen because it is able to efficiently (i.e., with low memory and runtime over-

head) answer queries at the large scale we evaluate in this work. For alternative state-of-the-art

DP query answering mechanisms, we leave their reimplementation, scaling, and reevaluation as

future work. Additionally, as in Aydore et al. [Ayd+21], we provide further context for RAP’s

present error by comparing it against the All-0 mechanism, which trivially answers 0 to every

query.

4.3.2 Focus of RAP’s Reevaluation

We now detail the two primary aspects of Aydore et al.’s evaluation of RAP that we enhance in this

chapter and how their origins trace back to a particular challenge in RAP’s initial implementation.

Adaptivity Evaluation: The first aspect that we address in RAP’s reevaluation is how RAP’s

adaptive component affects its utility. To provide context, we briefly describe the non-adaptive

form of RAP. We then describe the adaptive form of RAP and the motivation behind its design. Fi-

nally, we detail how Aydore et al.’s evaluation of RAP omitted studying the adaptive component’s

effect on utility, and we describe why that is an issue.

In its non-adaptive form, the RAP mechanism essentially reduces to privately answering the

full query vector Q with the Gaussian Mechanism, then applying the RP mechanism to gener-

ate a synthetic dataset. This non-adaptive form of the RAP mechanism is a novel reimagining of
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the classic Projection Mechanism [NTZ13], a near-optimal but computationally intractable mech-

anism for answering prespecified queries. By leveraging a relaxation of the query space and

utilizing EEDQs, Aydore et al. describe how their non-adaptive RAP mechanism can use modern

tools (e.g., GPU-accelerated optimization) to efficiently generate a relaxed synthetic dataset that

can hypothetically answer the prespecified queries with low (albeit non-optimal) error. More-

over, they prove a theoretical result (Theorem 4.1, [Ayd+21]) which confirms the power of the

non-adaptive RAPmechanism, achieving a

√
d′ factor of utility improvement over the prior state-

of-the-art mechanism.

Aydore et al. go on to describe the full adaptive form of RAP parameterized by T andK . This

adaptive form of RAP optimizes the synthetic dataset iteratively over T separate rounds, in each

round adaptively selectingK new queries to incorporate into the optimization procedure. Their

stated motivation for introducing adaptivity into RAP was to more wisely expend the privacy

budget by adaptively optimizing over a small number of “hard” queries. They conjecture (without

a result similar to their Theorem 4.1) that such adaptivity will result in higher utility than that

achieved by the non-adaptive form of RAP.

Aydore et al. then perform an empirical evaluation of RAP across a range of parameters and

datasets and establish that it achieves state-of-the-art utility — however, the utility benefits of

RAP’s adaptivity are left unanalyzed. Specifically, in all evaluations, they report the best utility of

RAP across 2 ≤ T ≤ 50 and 5 ≤ K ≤ 100. There are two issues related to this.

1. The values of T and K that achieved the maximum utility are not reported, only what

that maximum utility was. Thus, it is unclear how these parameters affect utility. This is

problematic in practice because evaluating RAP on multiple choices of T and K is compu-

tationally expensive and consumes a portion of the overall differential privacy budget.

2. The non-adaptive form of RAP is not empirically evaluated. Without evaluating the non-

adaptive RAP mechanism as a baseline, there is no meaningful way to understand or mea-

sure the benefit of adaptivity.
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Combined, these two issues leave open the question of how valuable the adaptive component of

RAP is and to what extent its adaptivity affects utility.

Query Space Evaluation: The second aspect we address in RAP’s reevaluation is how reduc-

ing the query space affects RAP’s utility for answering k-way marginals. First, we describe the

motivation behind evaluating this aspect: that for computational ease, Aydore et al. only evalu-

ated RAP on a reduced portion of the query space. We then detail how this reduction may have

biased their evaluation’s results.

Aydore et al.’s empirical evaluation focuses on RAP’s utility for answering k-way marginals,

specifically 3-way and 5-way marginals. Reviewing the code of their published RAP implemen-

tation, we determined that a heuristic filtering criterion of the query space was being applied

to remove any “large” marginals from possible evaluation. Specifically, any marginal with more

consistent queries than the number of records in the dataset (n) was not considered for evalua-

tion. The impact that filtering had on the evaluated workloads varied depending on k and n. For

instance, with 3-way marginals on the ADULT dataset, the filtering criterion removed the top

24% largest 3-way marginals, which accounted for over 90% of all consistent queries. With 5-

way marginals on the ADULT dataset, this filtering criterion removed the top 92% largest 5-way

marginals, which accounted for over 99.99% of all consistent queries.

Discussing this discrepancy directly with the authors [AS21] revealed that the filtering cri-

terion was an intentional choice meant to reduce the computational burden during experimen-

tation, and they conjectured that removing this criterion and rerunning all experiments would

yield results comparable to those obtained by increasing the workload size. Since all baseline

mechanisms were evaluated on the same query vectors, the filtering criterion does not result in

favorable utility for RAP relative to the prior state-of-the-art mechanisms that serve as their base-

lines. However, for marginals with a significantly larger number of consistent queries than n,

most queries will evaluate to 0 by a Pigeonhole principle argument. Thus, the filtering criterion

may result in favorable utility for RAP relative to the naive baseline mechanism that they consider
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in their work: All-0, the mechanism which outputs 0 as the answer to every query. This leaves

open the question of RAP’s utility on large, unfiltered query spaces, both in absolute terms and

relative to the baseline All-0 mechanism.

4.3.3 Reimplementing RAP

We now describe why these two aspects cannot be evaluated using Aydore et al.’s initial RAP

implementation: Briefly, the amount of memory required by the implementation is inordinate.

We then detail how we overcome this challenge by reimplementing RAP in a way that trades off

a significant amount of memory usage for a potential increase in runtime.

Conceptually, both aspects could be evaluated using Aydore et al.’s published code. However,

evaluating either the non-adaptive form of RAP or a larger portion of the query space both lead to

the same obstacle: Aydore et al.’s RAP implementation requires an inordinate amount of memory

to answer the corresponding large number of queries. We have identified several portions of

their code where this memory bottleneck occurs, all of which fail to execute either when the

total number of consistent queries is “too large” or when any marginal has “too many” consistent

queries. Consequently, Aydore et al. were unable to evaluate either the non-adaptive form of RAP

or a significant portion of the k-way marginals’ consistent query space.

The high-level idea behind our approach for overcoming this implementation challenge is to

trade off some of RAP’s required memory for a potential increase in its runtime. Our motiva-

tion for this approach is inspired by recent advances in the differentially private deep learning

literature. In particular, the canonical DP-SGD mechanism [Aba+16] for training machine learn-

ing models with differential privacy had been plagued by poor computational performance due

to several of its underlying operations (e.g., per-example gradient clipping, uniformly random

batch sampling without replacement, etc.) not being natively supported by modern machine

learning frameworks. More recently, however, several highly performant DP-SGD implementa-

tions [Pap19; You+21; SVK21] have been deployed that dramatically decrease the mechanism’s
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runtime in exchange for a mild increase in its memory usage. To our knowledge, our high-level

approach is the first in the DP literature to make practical use of this trade-off in the opposite

direction: decreasing the mechanism’s memory requirement by increasing its runtime.

Concretely, we overcome this implementation challenge by reimplementing RAP via the fol-

lowing high-level steps. First, we reduce the maximal memory requirement in RAP’s original

implementation caused by the original implementation’s implicit evaluation of all marginals (or,

more generally, all thresholds) in parallel. We accomplish this by evaluating each marginal (or

threshold) sequentially, thus distributing the computational burden. To further reduce the over-

all memory requirement, rather than explicitly enumerating and storing every query consistent

with eachmarginal (threshold), we represent the queries implicitly and only convert a query to its

explicit representationwhen it is needed for evaluation. To evaluate arbitrary sets of such individ-

ual queries, we implement the core EEDQ evaluation function from the ground up by designing

a simple, direct function to evaluate arbitrary predicates efficiently. With such a function im-

plemented, we then leverage a combination of powerful language features — namely vectorizing

maps and just-in-time compilation in JAX [Bra+18] — to enable efficient evaluation, summation,

and differentiation of large sets of predicates without exceeding memory constraints.

In addition to these implementation improvements, which primarily serve to reduce RAP’s

memory requirement, we additionally incorporate an algorithmic improvement based on recent

theoretical findings to help offset the increased runtime from our aforementioned deparalleliza-

tion step. Specifically, by trivially adapting the Oneshot Top-K Selection with Gumbel Noisemech-

anism [DR19; CR21] to our setting, we replace RAP’s iterative Adaptive Selection (AS) mechanism

with the more efficient Oneshot Adaptive Selection (OSAS) mechanism in Alg. 4.4. The results

of [DR19] prove that the OSAS mechanism is probabilistically equivalent to AS (i.e., both mecha-

nisms have identical output distributions and thus achieve identical privacy and utility), but OSAS

requires only one pass over a set of values to select the top-K instead of the K passes that AS

requires.
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Algorithm 4.4 Oneshot Adaptive Selection (OSAS) Mechanism

Input
• D,D′: The dataset and synthetic dataset.

• Q, Q̂: A vector of all statistical queries and their corresponding surrogate queries.

• Qs: A set of already selected queries.

• K : The number of new queries to selectK .

• ρ: Differential privacy parameter.

Body
1: Let ∆ = (|q̂i(D)− q̂i(D

′)| : qi ∈ Q \Qs).

2: Let I denote the indices of the top-K values of: ∆i + Zi, where Zi
iid∼ Gumbel

(√
K

2ρ|D|2
)
.

3: Let ãi = GM(D, qi,
ρ
2K

) ∀i ∈ I .
4: Let Qs = Qs ∪ {qi}i∈I .
5: Return: Qs and ã = (ãi : qi ∈ Qs).

Figure 4.1 compares our new implementation to Aydore et al.’s original implementation with-

out filtering out any large marginals. Specifically, this figure shows the runtimes of both im-

plementations executing the non-adaptive and adaptive variants of RAP given the same amount

of GPU memory on two datasets across a range of workload sizes
30
. We find that for the non-

adaptive variant of RAP, the original implementation was only able to evaluate tiny workloads,

while our new reimplementation was able to evaluate massive workloads (albeit with a very high

runtime); this represents a 500x improvement in memory efficiency for our reimplementation.

For the adaptive variant of RAP (specifically, with T=16 andK=4), we find that our reimplemen-

tation’s runtime is comparable to the original implementation’s — outperforming it slightly on

one dataset while being outperformed slightly on the other. On the ADULT dataset, both imple-

mentations were able to exhaustively evaluate the complete space of marginals. On the LOANS

dataset, the original implementation was able to evaluate marginal workloads of size 256 consis-

tently but was unable to evaluate the largest workload size of 1024 consistently; this represents

up to a 4x improvement in memory efficiency for our reimplementation.

30
The runtimes for both implementations (and all subsequent evaluations in this chapter) were measured on an

Nvidia RTX 3090 consumer GPU with 24 GB VRAM.
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Figure 4.1: Runtime evaluations of non-adaptive and adaptive RAP variants on the original imple-

mentation and reimplementation, on both ADULT and LOANS datasets.

4.3.4 Reevaluating RAP

Using our new implementation, we reevaluate both the adaptivity and query space aspects of RAP,

enabling new findings. We start by simply establishing RAP’s present utility for answering k-way

marginals on unbiased random samples of the full marginal space (i.e., without filtering out any

“large” marginals). This results in RAP answering approximately 50x more queries at its peak than

in Aydore et al.’s initial evaluation on filtered marginals. We then use these results to analyze the

role that adaptivity plays in RAP’s utility. Finally, we address the question of whether filtering the

large marginals out of RAP’s evaluation significantly impacts its utility in order to determine if

the filtering criterion is a reasonable heuristic to apply to reduce RAP’s computational burden in

future evaluations. This improved implementation and reevaluation, taken together, demonstrate

that RAP is a feasible and valuable mechanism for practical, real-world use cases. Furthermore,

in conjunction with our improved implementation, our findings enable new capabilities, such as

more efficient search strategies for optimal T and K parameters.

Evaluation Datasets

As in prior works on evaluating DP mechanisms that answer statistical queries [Ayd+21; Vie+20;

MSM19], all empirical evaluations use the ADULT [Fra10] and LOANS [Vie+20] datasets with

the same preprocessing. Table 4.2 contains a high-level description of each dataset.
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Dataset Records Features Binarized Features
ADULT 48,842 14 588

LOANS 42,535 48 4,427

Table 4.2: Datasets for empirical evaluations. Binarized features represent the features after a

transformation via one-hot encoding.

4.3.4.1 k-way Marginal Evaluation of RAP

To begin RAP’s reevaluation, we concretely establish its utility on a larger portion of the query

space than previously considered by Aydore et al. Specifically, we evaluate RAP’s present error

for answering uniformly random workloads of 3-way marginals across a range of parameters on

both the ADULT and LOANS datasets, and we do so without any thresholding criterion to filter

out “large” marginals. This results in RAP answering approximately 50x as many queries as in its

original evaluation by Aydore et al. — a contribution that was not possible utilizing RAP’s initial

implementation. Table 4.3 provides a reference for the parameter ranges in this experiment. For

each setting of parameters, we evaluate the adaptive variant of RAP across a range of T and K

values and report the combinations that achieve minimal present error
31
. We separately evaluate

the non-adaptive (T = 1, K = m) variant of RAP across the same range of parameters to answer

the question of whether or not there is any benefit to RAP’s adaptivity. Additionally, as baselines,

we evaluate the present utility of the All-0 and GMmechanisms, enabling us to put the utility of

RAP into context. The results of this experiment are visualized in Figure 4.2.

Several immediate conclusions can be drawn from these results. The first is that while the

non-adaptive variant of RAP achieves lower error than the GM baseline, its utility is nearly iden-

tical to the All-0 baseline for all but the smallest workload sizes. This result likely stems from

the fact that the answers to the large majority of a marginal’s consistent queries are 0 or nearly

0, with only a small percentage of answers having larger values. Since the non-adaptive variant

31
We note that evaluating multiple hyperparameter settings to select the optimal one has an impact on privacy

which, in practice, must be accounted for. Such accounting is an active area of research [LT19; PS22]. Thus, like

other works on DP workload answering mechanisms, we consider it out of the scope of this work. Alternatively, a

similar but public dataset may be used to perform hyperparameter selection without any impact on the final privacy

guarantee.
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Figure 4.2: Present error across a range of parameters and datasets for the adaptive and non-

adaptive variants of RAP, the GM baseline, and the All-0 baseline. Present error for the adaptive

variant of RAP is computed as the minimal error across the range of T and K values (with the

specific (T,K) pair that achieved the minimum reported at each point).
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Primary Mechanism RAP
Baseline Mechanisms All-0, GM

Utility Measure errP
D ADULT, LOANS

ϵ 0.01, 0.1, 1
δ 1/|D|2
|W | 1, 4, 16, 64, 256
n′ 103

T 1, 4, 16, 64
K 4, 16, 64, 256,m
k 3

Table 4.3: Experimental reference table for reevaluating RAP’s utility on k-way marginals.

of RAP first privatizes the answers to all queries, in the synthetic dataset optimization procedure,

it is likely unable to distinguish between the few answers that are genuinely larger than 0 vs.

the outliers that are only large due to random chance. The second conclusion is that the adap-

tive variant of RAP achieves significantly lower present error than the non-adaptive RAP variant

and the baselines. This implies that RAP’s adaptivity is critical for achieving low error and thus

warrants a more thorough investigation into T andK’s precise impact on utility. Because of this

finding, taken together with our findings in Figure 4.1 that the adaptive variant is significantly

faster than the non-adaptive variant, we can safely omit the non-adaptive variant of RAP from

further consideration in this work.

4.3.4.2 Role of Adaptivity

In this next experiment, we seek to understand the precise impact that T and K have on RAP’s

utility. From Figure 4.2, we are only able to glean that RAP typically achieves minimal error via

smaller values of T in conjunction with relatively larger values ofK . However, these values of T

andK vary dramatically across parameter settings and datasets. Moreover, Figure 4.2 provides no

information about RAP’s utility for T andK combinations that did not achieve minimal error. To

better understand the role these parameters play in RAP’s utility, we examine the present error
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Figure 4.3: Present error across a range of workload sizes with ϵ = 0.1 for the adaptive variant

of RAP at every combination of T and K value considered.

of the adaptive variant of RAP for every (T,K) pair across the same parameter settings from

Table 4.3. The results of this experiment are shown in Figures 4.3 and 4.4.

The heatmaps in both figures provide interesting insight into RAP’s adaptivity. In Figure 4.3,

with ϵ fixed at 0.1, we see no single (T,K) value or region that consistently achieves minimal

error across all workload sizes. Instead, we notice that at each workload size, there is some

diagonal banding at around a fixed region of T · K that achieves approximately minimal error.

That is, for any particular workload size, let (T ∗, K∗) denote the T and K value that induces

minimal error for RAP across our considered range of T,K values, and let c∗ := T ∗ ·K∗. We see

that for other (T,K) pairs such that T ·K ≈ c∗, the corresponding error is typically comparable

to the minimal error. Moreover, we see that as T · K diverges from c∗, RAP’s error increases

essentially monotonically. We hypothesize that for T · K ≪ c∗, RAP’s error is relatively high

because RAP had not answered and optimized over a sufficient number of queries. For T ·K ≫ c∗,

we hypothesize that RAP’s error is relatively high because the privacy budget is spread too thin

across answering a large number of queries, resulting in RAP utilizing overly noisy queries to

optimize its underlying synthetic dataset.
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Figure 4.4: Present error across a range of ϵ values with |W | = 256 for the adaptive variant of

RAP at every combination of T and K value considered.

These hypotheses are supported by the results in Figure 4.4. Specifically, as ϵ becomes larger,

not only does the minimal error of RAP decrease but the T andK values that achieve the minimal

error (along with their corresponding diagonal bands) are pushed to increasingly large values.

Taken together, these results imply that to achieve low error, RAP primarily requires answering

and optimizing over a specific number of queries — it is less important whether those queries are

answered in small batches over a large number of adaptive rounds or in large batches over a small

number of adaptive rounds.

This finding is important to RAP’s usefulness in practice, as it motivates improved search

strategies for optimal (T,K) values. Improved search strategies (beyond the naive N × N grid

search that we performed) are important for two reasons.

1. Evaluating RAP across a range of T andK values can be computationally expensive. Thus,

improved search strategies would decrease the computational cost. Alternatively, at a fixed

computational cost, improved search strategies would allow RAP to be evaluated across a

larger set of T and K values.
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2. In practice, each evaluation of RAP on any (T,K) setting consumes a portion of the privacy

budget, even though only the optimal setting is ultimately chosen. Thus, reducing the

total number of evaluated (T,K) settings enables more efficient use of the overall privacy

budget.

We provide one example of an improved search strategy over the naiveN×N grid search strategy

as follows. First, the observedmonotonicity of present error about c∗ could be leveraged to binary

search for a c := T ·K setting along the positive diagonal that achieves approximately minimal

error. Then, a linear search across all (T ′, K ′) settings such that T ′ ·K ′ = c could be performed to

compute the setting that achieves minimal error. Relative to the grid search, this strategy would

yield an O(N) factor improvement both in the portion of the privacy budget consumed as well

as in the computational cost.

4.3.4.3 Utility Impact of Filtering Marginals

In the final experiment, we analyze what impact filtering out marginals with “too many” consis-

tent queries has on RAP’s utility. Recall that in Aydore et al.’s evaluation, as a heuristic to reduce

the computational burden of experimentally evaluating RAP, any marginal was removed from

consideration if it contained more consistent queries than the number of records in the underly-

ing dataset. Here, we compare how RAP’s utility is affected by this marginal filtering criterion.

We initiate this comparison by reevaluating RAP with and without the filtering criterion. We do

so across the range of parameters in Table 4.3, and we record the minimal present error of RAP

at each parameter setting across all (T,K) pairs. We then perform two analyses on these results,

one focusing on how the workload size affects RAP’s present error with and without marginal

filtering and another analyzing how the total number of queries affects RAP’s present error. We

determine that RAP’s present error is impacted by filtering large marginals. More specifically,

we find that when holding the number of queries that RAP evaluates constant, filtering large

marginals increases RAP’s present error.
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Influence ofWorkload Size onUtility Aydore et al. hypothesized that removing themarginal

filtering criterion would cause RAP’s present error to increase comparably to the error increase

induced by increasing the workload size. To test this hypothesis, we perform a standard nested

regression analysis [GH06] on the RAP evaluation results. For brevity, we state the steps of this

analysis and then immediately jump to the results, deferring the regression details to the end-of-

chapter Appendix 4.A.

At a high level, the steps for this analysis are as follows. For the ADULT and LOANS datasets

separately, we define a full regression model to account for the following three variables’ (and

their interactions’) impact on RAP’s present error: the DP level ϵ, the workload size |W |, and

whether the marginal filtering criterion was applied. We also define a restricted regression model

that accounts for ϵ and |W | but does not distinguish whether or not a result had the marginal

filtering criterion applied. Following the standard approach for a nested regression analysis, we

first determine whether the full regression model is a good fit for the RAP evaluation results

(based on the fitted model’s adjusted R2
value, F -statistic p-value, and omnibus p-value). We

then compare the full model’s fit to the restricted model’s fit by performing a likelihood ratio

test, analyzing the p-value of the resulting χ2
statistic. Since the full model only differs from the

restricted model in that it accounts for whether the marginal filtering criterion was applied, we

can conclude that if the fit of the full model is both statistically sound and statistically significantly

better than that of the restrictedmodel, then themarginal filtering criterion impacts RAP’s present

error.

From this analysis, Figure 4.5 shows the fitted full regression model on both datasets with ϵ

fixed at 0.1. We find that the full regression models for both datasets fit the RAP evaluation results

well. Thus, we perform the aforementioned likelihood ratio test against the restricted models for
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Figure 4.5: Regression models for each dataset of RAP’s present error vs. workload size for results
from filtered and unfiltered marginals, at ϵ = 0.1.

each dataset. The corresponding p-values for the models on the ADULT and LOANS RAP evalua-

tions were 0.026 and 0.623, respectively32. The small p-value for the model corresponding to the

RAP evaluations on the ADULT dataset enables us to conclude that the marginal filtering criterion

does have an impact on RAP’s present error. However, the coefficients (and their corresponding

p-values) in the full regression model do not indicate any clear, statistically significant trend for

how the workload size impacts the present error when comparing the filtered vs. unfiltered RAP

evaluations. Moreover, regardless of the workload size, due to the lack of significance in many of

the coefficients’ p-values, we are unable to use this model to confidently determine the marginal

filtering criterion’s impact on RAP’s present error. Thus, although we are able to conclude that

incorporating the marginal filtering criterion into RAP’s evaluation does impact its present error,

we are unable to confirm Aydore et al.’s hypothesis on the precise nature of this impact.

Influence of Number of Queries on Utility We now perform a more direct analysis of the

marginal filtering criterion’s impact on RAP’s utility. Our previous regression analysis assessed

Aydore et al.’s hypothesis regarding the filtering criterion’s influence on RAP’s present error as a

32
We report the individual p-values for all statistical hypotheses tested. However, we control the family-wise er-

ror rate α (i.e., the probability α that at least one “false positive” finding will occur) using the Holm–Bonferroni

method [Hol79]. At the α = 0.05 level, no conclusions based on the individual p-values change when the

Holm–Bonferroni method is applied.
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Figure 4.6: Regression models for each dataset of RAP’s present error vs. number of queries for

results from filtered and unfiltered marginals, at ϵ = 0.1.

function of workload size. However, the filtering criterion does not affect workload size directly

— it only affects the total number of queries consistent with the marginals in the workload. As

such, we believe that a more informative assessment would be to analyze the marginal filtering

criterion’s influence on RAP’s present error as a function of the total number of consistent queries

it evaluates.

We perform this assessment using precisely the same statistical analysis and regression mod-

els as before, only now having the full and restricted models account for the total number of

queries rather than workload size. Figure 4.6 shows the fitted full regression models on both

datasets with ϵ fixed at 0.1. Again, the full regression models for both datasets fit the RAP evalua-

tion results well, allowing us to then test these full models against their corresponding restricted

models. The corresponding p-values of the likelihood ratio tests for the models on both the

ADULT and LOANS RAP evaluations were less than 0.0001, indicating that the filtering criterion

has a statistically significant impact on RAP’s present error (for both datasets this time). The

results from the figure for both datasets visually imply that including the filtering criterion in-

creases RAP’s present error for any given number of queries and that this increase worsens as the

total number of queries grows. By examining the coefficients (and their corresponding p-values)

of the full regression models on both datasets, we confirm that this visual trend holds statistically

as well.
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These results match intuition: for a result with the filtering criterion to have approximately

the same number of queries as a result without, the result with filtering would likely have corre-

sponded to a larger size workload. A larger size workload with the same number of queries im-

plies a more diverse set of queries, whereas a smaller workload with the same number of queries

implies a less diverse set of queries with sparser support (i.e., more of the queries evaluate to 0).

Thus, we conclude that Aydore et al.’s initial evaluation of RAP— especially for the highly filtered

5-way marginals — likely overestimates RAP’s present error. Moreover, this finding motivates a

new branch of work on large-scale query answering for the separate cases of when the queries

have dense support vs. sparse.

4.4 Extending RAP’s Applicability

Having confirmed that RAP is indeed a usefulmechanism for efficiently evaluating k-waymarginals

on a large scale in the prior section, we now address our third contribution for the setting where

queries are prespecified: extending RAP’s applicability by expanding the class of queries that it

is able to evaluate. We begin by discussing the motivation behind this contribution. We then

describe what we expand the query class to (r-of-k thresholds) and how we accomplish it. Fi-

nally, we detail the empirical evaluations we perform on RAP within this expanded query class

to quantify its utility and feasibility, finding that RAP efficiently evaluates r-of-k thresholds with

high utility.

4.4.1 Motivation

We contextualize the motivation for this contribution by considering the contributions of prior

works. Prior work on answering statistical queries in practical settings has been focused on rel-

atively simple classes of statistical queries — most popularly, k-way marginals (Definition 4.2.2),
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as these are a useful query class which is evaluable within a reasonable computational bud-

get [Bar+07; TUV12; Gup+13; Cha+14]. Aydore et al. claim that their gradient-based RAPmecha-

nism [Ayd+21] is able to answer queries from richer classes. In addition to evaluating k-way

marginals, they demonstrated this claim by briefly evaluating a new class of queries, 1-of-k

thresholds (Definition 4.2.3). However, 1-of-k thresholds are essentially a negation of k-way

marginals. As such, Aydore et al. were able to evaluate RAP on 1-of-k thresholds by reusing vir-

tually the same class of EEDQs and the same underlying implementation as they used for k-way

marginals. Thus, although their evaluation demonstrated that RAP attains high utility on both

query classes, these choices of query classes were not fully convincing in demonstrating that RAP

is effective for answering truly richer classes of queries. Therefore, it remained an open question

whether RAP is able to answer richer, more general query classes.

4.4.2 Expanding the Query Class

To extend RAP’s applicability, we develop the mathematical and computational machinery nec-

essary for RAP to evaluate a class of queries that generalizes both k-way marginals and 1-of-k

thresholds: r-of-k thresholds (Definition 4.2.4). We first describe this query class in detail, then

derive its corresponding EEDQs. Finally, we show how we optimize the derived EEDQs to be

more efficiently evaluable, greatly reducing RAP’s per-query evaluation time.

4.4.2.1 Generalizing to r-of-k Thresholds

Informally, an r-of-k threshold query counts what fraction of datapoints in the dataset have at

least r out of the k specified attributes. Thus, it strictly generalizes both k-way marginals (when

r = k) and 1-of-k thresholds (when r = 1). r-of-k thresholds are a useful generalization be-

cause they allow for more expressive, dynamic queries beyond the rigid “everything” (r = k) or

“anything” (r = 1) queries that were previously studied.
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The challenge when expanding RAP’s evaluation to r-of-k thresholds is deriving correspond-

ing EEDQs. r-of-k thresholds cannot trivially reuse the EEDQs relied upon by Aydore et al. to

evaluate k-way marginals and 1-of-k thresholds. Thus, we must derive new EEDQs for r-of-k

thresholds, and we accomplish this by generalizing the EEDQs of k-way marginals and 1-of-k

thresholds. Towards this, we first reframe the standard definition of r-of-k thresholds to enable

explicit accounting of all possible combinations of matching and non-matching terms.

Definition 4.4.1 (r-of-k thresholds, Alternative). An r-of-k threshold query qϕS,y,r
is a statistical

query whose predicate is specified by a positive integer r ≤ k, a set S of k features f1 ̸= · · · ≠

fk ∈ [d], and a target y ∈ (Xf1×· · ·×Xfk). LetR denote the set of all partitions (R+, R−) of the

k features in S, such that each |R+| ≥ r and each corresponding R− = S − R+. The predicate

ϕS,y,r is then given by

ϕS,y,r(x) =


1 if

∨
(R+,R−)∈R

(∧
i∈R+

(xfi = yi)
∧

i∈R−
(xfi ̸= yi)

)
0 otherwise.

Note that at most one partition inR will satisfy the predicate.

We now use this equivalent definition of r-of-k thresholds queries to design corresponding

EEDQs. For k-way marginals, Aydore et al. used product queries (Definition 4.2.7) as EEDQs,

which simply compute the product of a datapoint’s values at the k specified indices. For r-of-k

threshold queries, we generalize product queries in the following ways. First, we expand the

product queries to explicitly include both positive and negated terms, which we refer to as gen-

eralized product queries.

Definition 4.4.2 (Generalized Product Query). Given two disjoint subsets of features T+, T− ⊆

[d′], the generalized product query q̂ϕ̂T+,T−
is a surrogate query parameterized by ϕ̂T+,T− which is

defined as

ϕ̂T+,T−(x) =
∏
i∈T+

xi

∏
i∈T−

(1− xi).
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Informally, a generalized product query effectively serves as a “sub”-EEDQ for the conjunction

portion of a single partition of ϕS,y,r(x) in Definition 4.4.1.

Then, leveraging this alternative definition of r-of-k thresholds together with generalized

product queries, we define a new class of EEDQs in Definition 4.4.3: polynomial threshold queries.

Definition 4.4.3 (Polynomial Threshold Query). Given a subset of features T ⊆ [d′] and integer

r, let Υ denote the set of all partitions (T+, T−) of T such that each |T+| ≥ r and each corre-

sponding T− = T −T+. The polynomial threshold query q̂ϕ̂T,r
is a surrogate query parameterized

by ϕ̂T,r which is defined in terms of the generalized product query predicates as

ϕ̂T,r(x) =
∑

(T+,T−)∈Υ
ϕ̂T+,T−(x).

Informally, a polynomial threshold query computes the sum of generalized product queries across

all

∑k
t=r

(
k
t

)
partitions of T , where T is constructed identically as in Lemma 4.2.8; i.e., for every

i ∈ S, we include in T the coordinate corresponding to yi ∈ Xfi .

4.4.2.2 Optimizing the Evaluation of Polynomial Threshold Queries

Evaluating polynomial threshold queries can be computationally expensive due to their combina-

torial expansion and summation of generalized product query predicates. Therefore, optimizing

their definition to be efficiently evaluable is important for enabling RAP to evaluate large sets of

r-of-k thresholds. Towards this, we present two optimizations that can be used together, which

significantly improve the practical runtime of RAP.

The first optimization is inspired by Aydore et al.’s implicit reduction of 1-of-k threshold

queries to k-waymarginal queries. They accomplished this by recognizing that a 1-of-k threshold

predicate is the negation of a k-way marginal predicate on a negated datapoint; i.e., ϕS,y,1(x) =

1−ϕS,y,k(1−x). This equivalence enabled them to efficiently reuse the k-way marginals’ EEDQs

(product queries) in RAP’s evaluation. Applying this conceptmore generally to computing an r-of-

k threshold predicate ϕS,y,r(x), the idea is that when r ≤ k/2, it is logically equivalent to compute
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the negation of a corresponding predicate (with r′ = k − r + 1) on the negated datapoint; i.e.,

ϕS,y,r(x) = 1− ϕS,y,r′(1− x). The benefit of utilizing this equivalence when using a polynomial

threshold query as the EEDQ to evaluate ϕS,y,r(x) is that at most ⌈k/2⌉ different partition sizes

now need to be computed over, compared to at most k when not utilizing this equivalence. The

computational savings from utilizing the equivalence are especially apparent when r is small, as

it leads to an exponential (in k) reduction in the required number of predicate evaluations.

For the second optimization, the goal is to eliminate the need to explicitly account for the

negated terms in our alternative definition of r-of-k thresholds (Definition 4.4.1), as this neces-

sitates the computation of the product of negated values in generalized product queries (Defini-

tion 4.4.2). Removing the conjunction over negated terms from Definition 4.4.1 yields a logically

equivalent predicate, i.e.,

ϕS,y,r(x) =


1 if

∨
(R+,R−)∈R

∧
i∈R+

(xfi = yi)

0 otherwise.

However, more than one partition of R may now satisfy the predicate. As a result, analogously

eliminating the product of negated values from the generalized product query definition (re-

ducing it to a standard product query) would cause the summation in the polynomial threshold

query’s definition (Def 4.4.3) to overcount. To eliminate computing the product of negated values

while simultaneously remedying this overcount, we utilize the principle of inclusion-exclusion to

equivalently redefine polynomial threshold queries purely in terms of standard product queries

(Definition 4.2.7).

Definition 4.4.4 (Polynomial Threshold Query, Inclusion-Exclusion). Given a subset of features

T ⊆ [d′] and integer r, let Υ(i) denote the set of all i-size combinations of features in T for
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Primary Mechanism RAP
Baseline Mechanisms All-0, GM

Utility Measure errP
D ADULT, LOANS

ϵ 0.1, 1
δ 1/|D|2
|W | 1, 4, 16, 64, 256
n′ 500, 1000, 2000
T 1, 4, 16, 64
K 4, 16, 64, 256
r 1, 2, 3, 4
k 4

Table 4.4: Experimental reference table for evaluating r-of-k thresholds with RAP.

i = r, . . . , k; i.e., each Ti ∈ Υ(i) is such that |Ti| = i and Ti ⊆ T . The polynomial threshold

query q̂ϕ̂T,r
parameterized by ϕ̂T,r can be defined in terms of product query predicates ϕ̂T· as

ϕ̂T,r(x) =
k∑

i=r

(−1)i−r
(
i− 1

i− r

) ∑
Ti∈Υ(i)

ϕ̂Ti
(x).

Utilizing this redefinition of polynomial threshold queries reduces the number of arithmetic oper-

ations by nearly half relative to the original definition (when r > k/2, which we assume without

loss of generality by simultaneously utilizing the first optimization in this section). In our subse-

quent experiments with r-of-4 thresholds (Section 4.4.3), this reduction in operations results in

a maximal runtime improvement of approximately 40% for evaluating the polynomial threshold

queries.

4.4.3 Evaluating RAP on r-of-k Thresholds

With the class of EEDQs derived, the primary question is howwell RAP is able to utilize the EEDQs

to answer prespecified sets of r-of-k thresholds. We investigate this question by evaluating how

the various inputs to RAP affect its present utility and runtime.
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4.4.3.1 Utility on r-of-k Thresholds

To begin, we evaluate the present utility of RAP on r-of-k thresholds, with k fixed at 4. As in our

prior experiments in Section 4.3, we contextualize RAP’s utility by comparing against the utilities

of the All-0 and GM baseline mechanisms. We then evaluate the utility of each mechanism across

a range of r values, ϵ values, datasets D, workload sizes |W |, and synthetic dataset sizes n′, and

across the same T,K values for RAP as before. Table 4.4 summarizes the precise parameter values.

Figure 4.7 displays the results of this experiment for n′ = 1000, showing the minimal present

error of RAP across all T,K values considered alongside the present error of the baseline mech-

anisms. The present errors of both baseline mechanisms are as expected, with the All-0mecha-

nism’s present error having a clear and straightforward dependence on r, whereas the GMmecha-

nism’s present error is independent of r. Immediately, we see that RAP significantly outperforms

the baseline mechanisms in all settings. Across the r values, we find that RAP achieves its minimal

present error at r = 4 (i.e., 4-way marginals). Although RAP’s present error for r < 4 is not much

greater than for r = 4, we find no further apparent relationship between RAP’s present error and

r.

To understand the role that RAP’s adaptivity plays in this experiment, in Figure 4.8, we vi-

sualize RAP’s present error for each combination of T,K settings considered. Just as with 3-

way marginals in Section 4.3.4.2, we find that the same adaptivity behavior emerges with 4-way

marginals (r = 4); i.e., RAP primarily needs to evaluate a specific number of queries to achieve

low present error, regardless of whether those queries are evaluated jointly in a small number

of adaptive rounds or individually across a large number of adaptive rounds. However, we find

that this behavior no longer holds for r < 4. Instead, the only consistent pattern that we find

for r < 4 in this figure (which holds across other workload sizes and ϵ values as well) is that

RAP achieves its minimal present error when the number of adaptive rounds is relatively large

and the number of selected queries per round of adaptivity is relatively small. Since executing

RAP for a large number of adaptive rounds is computationally expensive, this finding motivates
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Figure 4.7: RAP’s minimal present error across all T,K values considered alongside present error

of the baseline mechanisms.
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Figure 4.8: RAP’s present error at eachT,K value considered on aworkload of 64 r-of-k thresholds
with ϵ = 0.1.

future work on reducing the necessary number of rounds of adaptivity. This could be done by

more strategically selecting the set of queries in each round — for instance, by considering their

expected joint impact on RAP’s present error in the next optimization step, rather than selecting

the individual queries with the highest present error independently.

4.4.3.2 Effect of Synthetic Dataset Size

Lastly, we investigate how RAP’s synthetic dataset size n′ affects its present error and runtime.

Conceptually, n′ controls RAP’s learning capacity — the larger n′, the better the answers to the

queries should be. However, since optimizing large synthetic datasets is computationally expen-

sive, n′ cannot be taken arbitrarily large. Similarly, when the synthetic dataset size is too small,

the optimization problem becomes underparameterized, which also results in a computationally

expensive optimization process. Aydore et al. empirically confirmed this utility–computation

trade-off for RAP with k-way marginals, where they found that setting n′ = 1000 struck a good

balance between utility and runtime for (filtered) 3-way and 5-way marginals.

We evaluate this trade-off on (unfiltered) r-of-4 thresholds, with the results shown in Fig-

ure 4.9. For each setting of r, we find that increasing n′ generally results in a mild reduction
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Figure 4.9: RAP’s present error and runtime as a function of the synthetic dataset size on a work-

load of 64 r-of-k thresholds with ϵ = 0.1.

of RAP’s present error, but that at n′ = 1000, RAP often attains minimal or near-minimal run-

time. This mirrors Aydore et al.’s results and thus supports their findings regarding RAP’s utility–

computation trade-off. However, one interesting new finding is the effect that r has on RAP’s

runtime. A priori, we expected that RAP would have the shortest runtime when evaluating r-of-

4 thresholds with r ∈ {1, 4} and that their runtimes would be comparable. This is because at

r ∈ {1, 4}, RAP has the least arithmetic operations to perform in order to evaluate each predicate

(compared to r ∈ {2, 3}; refer to Section 4.4.2.2 for details on predicate evaluation). At r = 4,

we confirm that RAP achieves minimal runtime. However, we find that r = 1 induces up to a

20x longer runtime. This increase in runtime is primarily explained by our prior observation that

for r < 4, RAP achieves its maximal utility via a larger number of adaptive rounds (where RAP’s

runtime approximately linearly increases with the number of rounds).

However, even with this jump in runtime taken into consideration, we find that RAP is a

highly performant mechanism for evaluating large sets of queries. For instance, consider the
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worst-case runtime at n′ = 1000 in Figure 4.9, which occurs where RAP answered a workload of

64 1-of-4 thresholds on the LOANS dataset. Here, RAP answered approximately 3.5×10
7
individual

consistent queries in 1,240 seconds — a rate of over 28,000 queries per second. Based on these

findings, we conclude that RAP is highly efficient for answering large sets of r-of-k thresholds.

4.5 Understanding RAP’s Generalizability

In this final section, we propose a new and realistic intermediate setting that lies between the

classic settings of having full knowledge of all queries in advance (i.e., the prespecified queries

setting) vs. having no knowledge of which queries will be posed. We begin by concretely defin-

ing this new partial knowledge setting along with a generalization-based measure of utility for

mechanisms operatingwithin it. We then address our final contribution by empirically evaluating

RAP’s utility to determine its suitability in the new setting.

Motivation

In statistical modeling, and especially in the subfield of synthetic data generation, the primary

goal is not to generate a model or a synthetic dataset that answers a prespecified set of queries

well. Instead, the goal is to generate a model or synthetic dataset that generalizes well to future

queries [Vap99; MRT12]. When it comes to differentially private mechanisms for answering sta-

tistical queries through a synthetic dataset, prior utility analyses have focused on either: (a) how

well those mechanisms answer the prespecified set of queries, or (b) theoretically bounding how

well the mechanisms can answer any class of queries in the worst case. For example, the util-

ity of RAP (and the related practical mechanisms which preceded it) had previously been based

solely on the answers to the prespecified workload, e.g., present utility. Experimentally eval-

uating a mechanism’s present utility is straightforward: simply report the error of the highest

error query from the prespecified query set. However, in some settings, it may be more benefi-

cial to understand how well the mechanism can answer future queries. Towards this, theoretical
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bounds can provide strong guarantees for the mechanism’s worst-case utility across an entire

query class [BLR08; Dwo+09; DRV10; HLM12; TUV12]. The drawback to using these theoretical

bounds in practical settings is that they may be overly pessimistic, especially if the queries posed

in the future are highly similar to those used to generate the synthetic dataset. This apparent

disparity between the utility suggested by theoretical analyses and the actual utility that may

be observed in practice is nearly identical to the disparity that famously exists between utility

analyses in theoretical vs. empirical machine learning research [Vap98; BM06; SSBD14; NTS14;

Zha+21]. However, for answering statistical queries with DP, the theoretical worst-case bounds

are currently the best tool available without introducing additional information or assumptions.

4.5.1 Defining the Partial Knowledge Setting

We now motivate the design of a particular partial knowledge setting, then formally define it.

Much like in the machine learning research literature, we motivate a new partial knowledge

setting for the context of differential privacy based on the rationale that in some realistic settings,

future queries may be similar to queries posed in the past, i.e., historical queries. For instance,

the U.S. Census Bureau periodically collects sensitive data for the decennial census and routinely

allows researchers to securely pose queries directly on the collected data. Because similar data

is being collected each decennial census, it is very likely that some of the queries analysts pose

on one census dataset will be similar to those that analysts pose on the next census dataset. This

intuition is illustrated in Figure 4.10.

We formalize this intuition on partial query repeatability for r-of-k thresholds in a general

manner in Definition 4.5.1. For ease of exposition, we first introduce the following notation. Let

T be an arbitrary distribution over thresholds, and letQ← T denote the vector of all consistent

queriesQ of a threshold randomly drawn from distribution T . Similarly, we letQ
|W |←−− T denote

the vector of all consistent queries Q from a |W | size workload of thresholds sampled i.i.d. from

T .
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Figure 4.10: Visualization of the intuition behind how prior studies can provide partial knowledge

of which future thresholds (or other query classes) may be posed by analysts.

Definition 4.5.1 (Partial Knowledge Setting, General). Let TH and TF be arbitrarily related distri-

butions over thresholds. In this setting, DP mechanisms are expected to answer arbitrary future

thresholds drawn i.i.d. from TF . However, the DP mechanisms are not provided TF explicitly. In-

stead, DP mechanisms are provided access to partial knowledge of TF via a workloadWH of “his-

torical” thresholds sampled i.i.d. from TH ; i.e., the mechanisms are given access to QH
|WH |←−−− TH .

Intuitively, in this partial knowledge setting, mechanisms can utilize QH to learn about the

underlying threshold distribution TH , and if TH is similar to TF , this will, in turn, inform what

areas of the threshold space future thresholds are most likely to be sampled from. The role of

QH in this setting is analogous to the role that training data plays in machine learning; i.e., it is

the concrete sample of data provided to the mechanism that the mechanism can use to attempt

to generalize.

For the historical queriesQH to convey useful information about TF to the DPmechanism, TH
and TF should be related. Towards this, in Definition 4.5.2, we specify two concrete instantiations

of the partial knowledge setting that make the relationship between TH and TF explicit.

1. Informally, the first concrete instantiation is the exact partial knowledge setting, where

historical thresholds are drawn from the same distribution as future thresholds.
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2. The second concrete instantiation is the drifting partial knowledge setting, which extends

the exact partial knowledge setting. The drifting partial knowledge setting is inspired by

the practical consideration that even if the historical and future thresholds distributions are

initially the same, they may gradually drift apart over time.

In both settings, we ground the historical and future thresholds distributions in the observa-

tion that, in practice, certain features (or combinations of features) are likely to bemore relevant to

analysts than other features. For instance, in the ADULT dataset, “Age” and “Years of education”

might be more relevant and valuable for analyses than “Capital loss amount” and “Relationship

status”. Wemodel this relevance as a historical probability distributionFH over the features, such

that the probability mass corresponding to any r-of-k threshold in TH corresponds to the (nor-

malized) product of the k features’ probabilities; i.e., TH is the sampling distribution of k features

from FH without replacement. Our definition of the drifting partial knowledge setting specifi-

cally attempts to capture the practical phenomenon that if (for instance) analysts’ interests are

concentrated primarily in a small subset of features, then even if their interests drift over time,

the analysts’ new interests may still be concentrated in a small subset of different features. Based

on this, we now formally define both concrete instantiations of the partial knowledge setting.

Definition 4.5.2 (Partial Knowledge Setting, Exact & Drifting). LetFH be an arbitrary historical

distribution over featureswith TH as its corresponding historical thresholds distribution. Without

loss of generality, assume the features are sorted in descending order of their probability masses

under FH ; i.e., for each feature fi with probability pi, we have that pi ≥ pi+1. Let γ ∈ [0, 1] be a

drift parameter, which defines the distributional similarity of the future distribution over features

FF (and correspondingly the future thresholds distribution TF ) as follows. For each probability

pi, associate the corresponding key

ki = (1− 2γ)︸ ︷︷ ︸
ordering

weighting

· d− i

d− 1︸ ︷︷ ︸
relative order,

normalized

+ (1− |1− 2γ|)︸ ︷︷ ︸
shuffling

weighting

· ui︸︷︷︸
random

shuffling

amount

,
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where ui
iid∼ Uniform[0, 1]. The feature distribution FF is defined by leaving the features fixed in

their original ordering, but reordering the probability masses in descending order of their keys.

This results in a distribution of the same concentration but with probability masses re-assigned

to potentially different features. Therefore, the future thresholds distribution TF is the sampling

distribution of k features without replacement from FF . When γ = 0, this procedure yields

TF = TH , and we refer to this as the exact partial knowledge setting. When γ > 0, we refer to

this as the drifting partial knowledge setting.

This model of drift is designed to maintain the concentration of the initial feature distribution

FH while interpolating between the exact partial knowledge setting (γ = 0) and a uniformly

random reshuffling of the features’ probabilities (γ = 1/2). For 0 < γ < 1/2, this model induces

a weighted amount of random reshuffling of probabilities in conjunction with simultaneously

encouraging features’ probabilities to remain “similar” to what they initially were, e.g., features

with large probability masses underFH are likely to retain large probability masses underFF . On

the other end of the spectrum is the γ > 1/2 setting, where the relative orderings of probabilities

become more likely to be reversed; e.g., features with large probability masses under FH are

likely to be assigned small probability masses under FF . At the extreme of this setting is γ = 1,

which induces FF of maximal total variation distance to FH by deterministically reversing the

relative ordering of the features’ probabilities. Figures 4.11 and 4.12 concretely illustrate how the

drift amount γ affects the distribution of future features.

We note that there are other well studied non-uniform probability measures on permutations

that can be used in place of our proposed drift model (e.g., Mallows [Mal57], Plackett-Luce [Pla75;

Luc12], etc.). We opted for our defined model because it is more straightforward while capturing

the necessary components of threshold drift in an intuitive and easily controllable way. However,

significant research has been conducted on various theoretical and applied aspects of alternative

models. For a theoretical treatment of threshold drift, which we leave to future work, leveraging

the significant body of results for these alternative models could prove invaluable.
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Figure 4.11: Examples of drifted feature distributions FF across a range of drift parameters γ,
with an initial Geometric distribution for FH on the ADULT and LOANS datasets. Categorical

features are numbered (rather than named) along the x-axis.
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Figure 4.12: Effect of drift parameter γ on the total variation distance between the historical

features distribution FH and the future features distribution FF , with an initial Geometric dis-

tribution for FH on the ADULT and LOANS datasets.
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4.5.2 Measuring and Computing Utility

Having concretely defined the partial knowledge setting, we formally define a utility measure to

quantify how well a mechanism can answer future thresholds based on the historical thresholds

it was given access to. In other words, we define a measure quantifying how well the mechanism

generalizes. We then describe how to empirically evaluate this defined utility measure efficiently.

In this setting, we are interested in the mechanism’s error across its answers to the consistent

queries of r-of-k thresholds drawn from TF . This new utilitymeasure is based on the classic utility

measure used in the prespecified queries setting (Definition 4.3.1), with the only difference being

that the randomness of the future thresholds distribution TF is now explicitly taken into account.

We thus define future utility, which we measure in terms of the negative of future error ; i.e., a

mechanism with low future error has high future utility and vice versa. Specifically, future error

is the expected absolute error taken over the randomness of bothM and TF , formally defined as

follows.

Definition 4.5.3 (Future error). Let a = Q(D) be the true answers to all queries in Q on D,

and let ã be mechanism M ’s corresponding answers. Then errF is the future error of mecha-

nism M , defined as errF (M,D, TF ) = EM(D),Q←TF ∥a− ã∥∞, where the expectation is over the

randomness of both the mechanism and future threshold distribution.

Theoretically evaluating errF of a mechanism on a priori unknown threshold distributions

without resorting to worst-case bounds is a challenging problem. Experimentally, however, we

are able to efficiently and accurately estimate errF for the RAP mechanism as follows:

1. Construct the feature distributionsFH andFF according to real-world phenomena, which

in turn define the threshold distributions TH and TF .

2. Generate a workloadWH of historical thresholds, yielding query vectorQH
WH←−− TH . In-

dependently, generate aworkloadWF of future thresholds, yielding query vectorQF
WF←−−

TF .
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3. Provide QH as the input queries to RAP in order to generate a synthetic dataset.

4. Use the synthetic dataset to answer QF , recording the mean error (and optionally, the

corresponding confidence intervals to quantify how faithfully errF was approximated).

This evaluation approach is analogous to standard practice in empirical machine learning re-

search where data is split into “training” and “test” sets randomly (to ensure distributional sim-

ilarity) [Has+09]. The model is then learned on the training set and subsequently evaluated on

the test set to measure how well it generalizes.

4.5.3 Evaluating RAP’s Future Utility

As our final contribution, we empirically evaluate RAP’s future utility for answering r-of-k thresh-

olds. The experiments that we perform on RAP to understand its suitability in this new partial

knowledge setting are as follows:

• Evaluating the effects that the threshold distribution concentration and the historical thresh-

old workload size |WH | have on RAP’s future utility.

• Evaluating the effect that “overfitting” in the synthetic data optimization step has on RAP’s

future utility.

• Evaluating the effect that the distribution drift amount γ has on RAP’s future utility.

These experiments are designed to assess the distinct new ways (beyond those in the previous

prespecified queries setting) in which RAP’s inputs may influence its future utility.

4.5.3.1 Effect of Threshold Distribution Concentration & Historical Workload Size

To empirically evaluate RAP’s future utility in the exact partial knowledge setting, we must spec-

ify the particular threshold distribution TH = TF from which we generate both the input queries
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QH and future queries QF used to evaluate errF . As previously discussed, we do so by spec-

ifying feature distributions FH and FF that, in turn, define the threshold distributions. As a

baseline, we choose what is intuitively the most challenging extreme: setting FH and FF to be

the Uniform distribution. We expect the future utility of this baseline to be the lowest among all

possible distributions since it is the least concentrated, implying that it provides the least amount

of information possible to the mechanism about any particular region of the threshold space.

In an effort to model the real-world phenomenon that certain features are likely to be more

relevant to analysts than other features, we utilize the following two feature distributions. For

a highly concentrated distribution, we use the exponentially-tailed Geometric distribution. For

a mildly concentrated distribution, we use the heavy-tailed Zipfian distribution. Both distribu-

tions are commonly used in practice when modeling real-world phenomena, e.g., [MC89; Yu+04;

Zen+12; OVL18]. We hypothesize that the highly concentratedGeometric distributionwill induce

high-utility results since many of the same features in QH will also appear in QF . Analogously,

we hypothesize that the mildly concentrated Zipfian distribution will induce lower-utility results

(although still higher than the Uniform distribution baseline).

With a fixed threshold distribution TH defined by the feature distributionFH , wemust specify

how many thresholds will be randomly sampled to form the historical threshold workload WH

(and corresponding vector of all consistent queries QH ) that RAP takes as input. Obtaining a

clear understanding of what impact the historical workload size |WH | has on RAP’s future utility

is important because there may be a tension between the number of historical r-of-k thresholds

and RAP’s future utility. On the one hand, the more sampled thresholds there are, the more

information RAP has about the underlying distribution TF from which future thresholds will be

generated. This suggests that the more historical r-of-k thresholds there are, the higher RAP’s

future utility should be. On the other hand, to optimize RAP’s underlying synthetic dataset, its

privacy budget is split between all queries consistent with the historical thresholds. This implies

that the more historical thresholds there are, the more noise will be added to each consistent
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Primary Mechanism RAP
Baseline Mechanism All-0

Utility Measure errF
D ADULT, LOANS

ϵ 0.1
δ 1/|D|2
|WH | 1, 4, 16, 64, 256, 1024
n′ 1000
T 1, 4, 16, 64
K 4, 16, 64, 256
r 1
k 3

TH , TF Uniform, Zipf, Geometric

γ 0, 0.05, 0.1, 0.2, 0.5, 1

Table 4.5: Experimental reference table for evaluating the future utility of RAP on r-of-k thresh-

olds.

query’s answer, which seems to suggest that this will cause the future utility to be lower. Thus,

we seek to understand whether one of these two possibilities is correct or whether there is a

“sweet spot” where a certain number of historical thresholds is just enough for the mechanism

to implicitly learn TF but does not result in the privacy budget being spread too thin.

To empirically quantify the effect of both the threshold distribution concentration and his-

torical workload size on RAP’s future utility, we evaluate RAP across a range of workload sizes

using the three specified distributions over features in both the ADULT and LOANS datasets.

To put RAP’s future utility into context, we also evaluate the future utility of the All-0 baseline

mechanism. Refer to Table 4.5 for a summary of this experiment.

Figure 4.13 shows the results of this experiment. As in our prior experiments, each point of the

RAP line is taken to be where RAP achieves minimal present error across all combinations of T,K

evaluated. The future error at this minimizing T,K pair is then evaluated and plotted, along with

a corresponding 95% confidence interval to account for randomness both between independent

repetitions and across sampling future thresholds from the threshold distribution. For real-world

applications, this reflects what a practitioner using RAP would be able to do; i.e., choose the best-

performing instance of RAP across T,K values on the present error metric (since they would not
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Figure 4.13: RAP’s future error (and 95% confidence intervals) across all T,K values considered

where RAP achieves minimal present error, plotted across a range of workload sizes and historical

threshold distributions. “RAP (opt)” represents RAP’s future error across all T,K values considered

where RAP achieves minimal future error. Future error of All-0 included as a baseline.
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Figure 4.14: RAP’s future utility on each threshold distribution across a range of workload sizes.
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be able to evaluate future error), and then use that instance to answer future queries. Ideally, how-

ever, the practitioner would have omnisciently been able to choose the best-performing instance

of RAP across T,K values on the future error metric directly, as this approach will never have

larger future error than the former (feasible) approach. To understand whether there is a signifi-

cant difference in the future error between these two scenarios, we additionally plot the latter as

“RAP (opt)”. For each distribution individually, we find the results are as expected. Namely, RAP’s

future error is always lower than the baseline mechanism All-0’s future error, and RAP’s future

error decreases as the number of historical thresholds that it is given increases. Interestingly, we

find no evidence that there is any point at which the number of historical thresholds given to

RAP becomes “too large” and causes RAP’s future error to begin increasing. Instead, we find that

RAP benefits from being provided more historical thresholds when the historical workload size

is small, then eventually reaches a point of diminishing returns. Additionally, we find that the

future error corresponding to the RAP instance that attains minimal present error across T,K val-

ues is nearly identical to the future error corresponding to the RAP instance that attains minimal

future error across T,K values. This indicates that in practice, answering future queries using

the RAP instance that achieved minimal present error across T,K values will likely also yield the

minimal future error.

To better visualize the differences across distributions, RAP’s future error lines are overlayed

in Figure 4.14 for both the ADULT and LOANS datasets. From this, we see that the differences

between RAP’s future error across all three distributions are not as striking as one may expect. For

small historical workload sizes (less than 16 and 64 on the ADULT and LOANS datasets, respec-

tively), we find that the results roughly align with our intuition: the least concentrated (Uniform)

distribution induces the highest future error, while the most concentrated (Geometric) distribu-

tion induces the lowest future error. These findings, taken together with those of Figure 4.13,

yield a simple, useful insight into how to achieve low future error with RAP in practice. Specifi-

cally, if the size of the historical workload is small, a practitioner can simply augment it by adding
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uniformly randomly sampled thresholds from the space of all possible thresholds (regardless of

what the underlying threshold distribution TH is). In the worst case, RAP’s future error will be

essentially unaffected (if |WH | was already in the region where returns are diminishing); in the

best case, RAP’s future error will be reduced significantly.

4.5.3.2 Effect of “Overfitting" the Synthetic Dataset

When answering a prespecified set of queries using RAP, the goal in the relaxed projection step

is to achieve as close to a global minimum as possible. In fact, although such an achievement is

unlikely in practice, Aydore et al.’s theoretical utility result relies on a global minimum having

been reached. However, when the goal is to learn a model that generalizes to unseen data, it

is well known that optimizing the loss function to a global minimum will lead to an extremely

overfit model. In the exact partial knowledge setting where future utility is the metric of choice,

we seek to determine whether a conceptually similar “overfitting” phenomenonmay be occurring

when RAP uses the historical threshold workload to generalize to future thresholds.

Towards this, we recall our finding from Figure 4.13. Specifically, that RAP does not seem

to noticeably overfit to the historical queries when selecting the adaptivity parameters T and

K based on the instance of RAP that had minimal present error. However, this finding does

not eliminate the possibility that RAP is overfitting to the historical queries during the synthetic

dataset optimization procedure itself. For instance, in Figure 4.14 on the LOANS dataset at a

historical workload size of 4, there is a significant difference between RAP’s future errors on the

Uniform vs. Geometric distributions. This could be explained either by RAP overfitting to the

historical workload generated from the Uniform distribution (which is relatively less informative

regarding which thresholds are likely to be sampled in the future), or it could simply indicate

that the historical workload does not contain enough information about the relevant space of

thresholds that RAP needs to generalize well. To analyze this possibility, we perform the same

experiment as above while simultaneously evaluating RAP’s future utility not just at the end of the
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optimization procedure but after each iteration. Figure 4.15 displays the results, along with RAP’s

training loss and present error after each iteration of the optimization procedure. In classic ML, a

canonical symptom of overfitting is observing a point in the training progress where the training

error continues decreasing but where the test error begins steadily increasing. In our setting, the

analog would be observing a point where the present error continues decreasing but where the

future error begins increasing. However, we do not observe such behavior in either graph, as the

future error steadily decreases throughout the entire training procedure. The primary difference

between the two graphs is that RAP’s decrease in future error under the Uniform distribution is

much smaller than under the Geometric distribution. This indicates that, as expected, RAP is able

to take advantage of the significantly more informative (with respect to the relevant portions

of the space that future thresholds will be drawn from) historical workload from the Geometric

distribution. Viewed differently, in the case of the Uniform distribution, RAP did not “overfit” to

the historical workload — rather, the historical workload did not provide enough information to

RAP about the relevant remainder of the query space.

The takeaway from these findings is that while RAP would have benefited from having a

larger historical threshold workload, it would not have benefited from introducing analogs to

other classic overfitting remedies. For example, a practitioner may be tempted to reserve a held-

out set of thresholds from the historical workload with the intention of using them between

iterations as a proxy to estimate future utility, stopping the training early when the error on the

held-out set begins increasing. Not only do these findings indicate that such a strategy would

not be beneficial, but combined with the findings from the previous experiment, we conclude

that such a strategy would result in relatively greater future error due to the reduced historical

workload that RAP is given.
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Figure 4.15: Training progress across iterations for RAP on Uniform vs. Geometric distributions

over features in LOANS dataset, both with a small historical workload size of 4.

4.5.3.3 Effect of Threshold Distribution Drift

In the drifting partial knowledge setting, as the future features distribution FF drifts further

from the historical features distribution FH , it is clear that RAP’s future utility should decrease.

However, it is unclear how sensitive RAP’s future utility is to such drift. Thus, we seek to quantify

the extent to which RAP can tolerate distributional drift while maintaining high future utility.

To achieve this, we evaluate RAP’s future utility in the following experiment. We first define

the historical features distribution FH using the aforementioned highly concentrated Geometric

distribution over features in both the ADULT and LOANS datasets. We thenmeasure RAP’s future

error across a range of drift amounts. Because RAP achieved low future error in the exact partial

knowledge setting on all distributions when the workload size was large enough, we anticipate

that distributional drift will similarly not have a significant impact when the historical workload

size is large. Thus, in Figure 4.16, we evaluate the impact of distributional drift specifically with

small historical workload sizes of 4 and 16 on the ADULT and LOANS datasets, respectively.

The results of this experiment reveal that on both datasets, RAP is fairly impervious to distri-

butional drift. RAP’s future error only begins to exhibit a significant increase at approximately

γ = 0.4 on the ADULT dataset and γ = 0.1 on the LOANS dataset. Compared with Figure 4.12,
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Figure 4.16: Future error of RAP across a range of distributional drift amounts on the ADULT and

LOANS datasets, given small historical workload sizes of 4 and 16, respectively.

these points correspond to an expected total variation distance between the historical and future

features distributions of approximately 0.5 on their respective datasets. Thus, we are able to con-

clude that even if the future features distribution drifts from the historical features distribution

by a moderate amount, RAP can still be expected to maintain high utility.

4.6 Additional Related Works

In this section, in addition to the prior works on large-scale query answering previously discussed

(Section 4.1.1), we detail other important works related to differentially private query answering.

We begin by discussing some works (concurrent with and subsequent to our work presented in

this chapter) related to answering large sets of prespecified queries. For the mechanisms defined

in these works, a prime direction for future research would be to evaluate them analogously to

our evaluation of RAP in this chapter. For instance, evaluating their scalability to larger query

spaces and their generalizability for answering queries posed in the future, perhaps in a manner

similar to Tao et al. [Tao+21]). We then briefly discuss some lines of research related to the general

problem and settings explored in this chapter.
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Answering Many Queries

One closely related work to the goals of this chapter is that of Liu et al. [LVW21], which studies

the problem of constructing an algorithmic framework for privately answering a prespecified set

of statistical queries — our first setting of interest. Concretely, their framework unifies several

DP mechanisms that specifically answer queries by building a synthetic dataset through itera-

tive, adaptive updates. These mechanisms include the previous practical state-of-the-art mecha-

nisms [Gab+14; Vie+20], as well as a modified variant of a preliminary version of the RAP mech-

anism (where a softmax transformation [Bri90] is applied to each row of the synthetic datasetD

after each iteration of RAP’s optimization procedure). Liu et al. then leverage their framework

to design two new mechanisms for answering prespecified sets of queries and empirically show

that both achieve high utility. However, in their empirical evaluations, Liu et al. find that the

modified RAPmechanism’s utility is comparable to the utility of their two newly proposed mech-

anisms and that RAP is computationally cheaper to execute. Thus, we leave large-scale evaluations

of their two newmechanisms as future work. Moreover, Aydore et al. have subsequently updated

the RAP mechanism to incorporate a similar modification (applying the Sparsemax transforma-

tion [MA16], and optionally finishing with randomized rounding) and showed that it further

improves utility — in turn, further justifying our focus on the RAP mechanism.

Along similar lines, another closely related work is the recently introduced Adaptive and Iter-

ative Mechanism (AIM) by McKenna et al. [McK+22]. AIM is a mechanism for DP synthetic data

generation to specifically answer workloads of marginal queries. The high-level idea of their ap-

proach is similar to that of RAP and Liu et al.’s work [LVW21], adaptively selecting marginals

to use to optimize the synthetic dataset. However, their work takes this further by designing

a method to perform the selection more intelligently. Moreover, they develop new techniques

to quantify the uncertainty of answers derived from the generated synthetic data. Empirically

evaluating AIM, they show that it generally outperforms prior state-of-the-art mechanisms, in-

cluding RAP. However, their evaluation setting was somewhat different; specifically, they reduced

210



the domain size of the datasets by discretizing numerical features into 32 equal-width bins. This

makes the optimization problem significantly easier for all mechanisms they evaluate, which is

highly useful when running a wide range of experiments across many random trials. However, it

leaves AIM’s utility unclear when the data is unbinned and sparse (e.g., for a numerical attribute

with 100 possible values). Moreover, since the source code of AIM’s implementation was not

released, we consider a ground-up reimplementation of AIM amenable to large-scale evaluations

on large and sparse data spaces to be out of the scope of this work. Performing such evaluations,

especially in connection to the computational resources required by each method (AIM, RAP, and

others), is a prime direction for future work.

Another closely related work is the concurrent theoretical work of Nikolov [Nik22], which

proposes and analyzes a new mechanism for answering sets of prespecified queries with differ-

ential privacy. Their new mechanism is based on randomly projecting the queries to a lower-

dimensional space, answering the projected queries with a simple DP additive-noise mechanism,

then lifting the answers back into their original dimension. Their work’s primary focus and

contribution is the thorough mathematical analysis of the mechanism’s utility, showing that it

achieves optimal worst-case sample complexity under an average error metric. Such results are

less directly relevant to our work, as we focus on different error metrics for fixed real-world

datasets (rather than in the worst case across all possible datasets). However, conceptually,

Nikolov’s newly proposed mechanism could be used to tackle the same problem as our work.

Practically though, the runtime of Nikolov’s mechanism (although polynomial) would prevent it

from being used to answer the large number of queries that we answer with RAP in this chapter.

An intriguing direction for future work would be adapting Nikolov’s new mechanism for practi-

cal query answering and determining ways to scale it up to accurately answer queries on a truly

large scale.

A final line of closely related work is the subsequent work of Vietri et al. [Vie+22]. Their

work focuses explicitly on enhancing the RAP mechanism, creating a new mechanism they call
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RAP++. Their goal is orthogonal to the goal of this chapter in that they seek to extend the original

RAP mechanism so that it can support numerical features natively. Prior to their work, RAP re-

quired one-hot discretization of any numerical features in the dataset. For features with wide nu-

merical ranges, one-hot discretization greatly increases the dimensionality of RAP’s optimization

problem, increasing the computational burden and simultaneously decreasing the mechanism’s

overall utility. In RAP++, Vietri et al. incorporate tempered sigmoid annealing and random linear

projection queries into RAP in order to handle a mixture of categorical and numerical features

without any discretization. They perform several empirical evaluations on RAP++, finding that it

achieves state-of-the-art utility and runtime. Despite their goal being orthogonal to this chapter’s

goal, the findings could be used to further improve the RAP++ mechanism and its evaluation.

Related Lines of Research

One related (but disjoint) line of research is on the public/private model of differential privacy,

where some data must be protected with differential privacy while the remaining “public” data re-

quires no privacy protections [BNS13; JE13; HCB16; Pap+17; Bas+20a; ABM19; Liu+21; TBM21].

These works have shown that mechanisms can be designed which make use of a small amount

of public data in order to boost utility significantly. Our work differs from this model in that it

does not use any public data. In our newly defined partial knowledge setting, we instead assume

that the entire set of user dataD is private but that there exist publicly known historically posed

queries QH which are not privacy sensitive. Assuming that QH was generated from a random

distribution TH , we seek to understand the extent to which the RAP mechanism is able to take

advantage of QH using D to accurately answer future queries generated from a distribution TF
related to TH .

The final related line of work is on reconstruction attacks, which studies how accurately sets

of queries can be answered before private information in the dataset can be recovered. The high-

level results of this research can be summarized through the Fundamental Law of Information
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Recovery [DR+14]: “overly accurate answers to too many questions will destroy privacy in a

spectacular way.” Initial work on reconstruction attacks [DN03] inspired the conception of DP,

and subsequent works have improved the computational efficiency of attacks, improved the the-

oretical analyses of attacks, or crafted highly effective attacks to specific cases [DMT07; DY08;

MN12; Dwo+17; GAM19]. Although somewhat related, this line of work’s focus significantly

differs from our work’s focus. In research on reconstruction attacks, the basic goal is to find

worst-case sets of queries (or the minimal sizes thereof) such that it is impossible to answer them

all accurately while simultaneously maintaining privacy. In this work, our focus is not on generic

worst-case queries but instead on efficiently and accurately answering practical sets of prespec-

ified or randomly sampled queries with privacy. Thus, the works on reconstruction attacks are

not directly relevant to our problem in either of the two settings we consider.

4.7 Future Directions

As evidenced by the discussion of relatedworks in Section 4.6, there is significant current research

progress on DP query workload answering and DP synthetic data generation. Specifically related

to the goals of this chapter, we believe the most promising future directions lie in the scalability

and generalizability of query workload answering mechanisms.

Regarding scalability, practical mechanisms for answering query workloads have been eval-

uated across a range of datasets and workloads to quantify their utility. However, less attention

has been devoted to quantifying these mechanisms’ scalability and understanding when and why

they may fail to scale. Some DP mechanisms may excel at accurately answering a small query

workload, but whose runtime becomes intractable as theworkload grows. Othersmay excel at an-

swering moderately large workloads quickly and accurately, but their implementations suddenly

fail due to resource constraints when faced with truly massive workloads. Conversely, some

mechanisms may answer exceedingly large workloads quickly by exploiting a simpler design

or natural parallelization, but their accuracy on smaller workloads is relatively poor compared
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to the other approaches that are unable to scale. Thus, we posit that a critical direction for fu-

ture work lies in benchmarking DP query answering mechanisms while controlling for important

computational resources. For instance, DP query answering mechanisms should be benchmarked

not only across a range of workload sizes but also across a range of RAM allowances (or VRAM

allowances for GPU-bound mechanism implementations), runtime limits, and distributed com-

puting resources. In particular, designing a system to perform such benchmarks in an automated

way would remove a tremendous barrier for anyone looking to leverage a DP query answering

mechanism for their particular use case.

Regarding generalizability, a straightforward direction for future work is understanding how

well alternative DP query answering mechanisms are able to generalize for answering queries

posed in the future. A separate direction, however, is in designing DP query answering mecha-

nisms that generalize in a different sense. In this chapter and related prior works, mechanisms

were evaluated on single specific subclasses of statistical queries, e.g., k-way marginals. But, in

practice, when a synthetic dataset is released, analysts may desire to pose queries from classes

other than the class the synthetic dataset was explicitly generated from. As a simple example, an

analyst may want to pose both k-way marginal queries and 1-of-k queries. Designing DP mech-

anisms capable of producing useful synthetic datasets for answering these mixed-class queries is

a particularly valuable line of future research with important practical implications.
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4.A Chapter Appendix

Deferred Regression Analysis Details

In this portion, we present the details of the setup and results for the regression analysis on the

utility impact of filtering “large” marginals out of RAP’s evaluation.

Present Error vs. Workload Size

For this regression analysis on each dataset, we define the following regression variables:

• x1, x2: dummy variable encodings for the three levels of ϵ evaluated. I.e.,

◦ x1 = x2 = 0 represents ϵ = 0.01.

◦ x1 = 1, x2 = 0 represents ϵ = 0.1.

◦ x1 = 0, x2 = 1 represents ϵ = 1.

• x3: logarithm of the workload size.

• x4: indicator variable representing whether thresholding was applied. I.e., x4 = 0 if thresh-

olding was not applied, x4 = 1 if it was.

• ζ : stochasticity in the process (e.g., from randomness in the RAPmechanism due to privacy,

from randomness in the marginal selection process across independent trials, etc.).

With these variables defined, we state the full regression model with interactions as

errP = β0+β1x1+β2x2+(β3+β4x1+β5x2)x3+(β6+β7x1+β8x2+(β9+β10x1+β11x2)x3)x4+ζ,

and the restricted regression model as

errP = β0 + β1x1 + β2x2 + (β3 + β4x1 + β5x2)x3 + ζ.
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We then fit both the full and restricted regression models to the results of the RAP evaluations for

the ADULT and LOANS datasets (separately). Regression results for the full models (ADULT on

left and LOANS on right) are stated below.

Dep. Variable: present_err R-squared: 0.963

Model: OLS Adj. R-squared: 0.959

Method: Least Squares F-statistic: 266.6

Covariance Type: nonrobust Prob (F-statistic): 7.40e-76

No. Observations: 126 Log-Likelihood: 295.45

Df Residuals: 114 AIC: -566.9

Df Model: 11 BIC: -532.9

coef std err t P> |t| [0.025 0.975]

β0 0.0320 0.009 3.415 0.001 0.013 0.051

β1 -0.0066 0.013 -0.495 0.621 -0.033 0.020

β2 -0.0248 0.013 -1.869 0.064 -0.051 0.001

β3 0.0650 0.003 24.536 0.000 0.060 0.070

β4 -0.0528 0.004 -14.075 0.000 -0.060 -0.045

β5 -0.0600 0.004 -16.015 0.000 -0.067 -0.053

β6 0.0280 0.013 2.120 0.036 0.002 0.054

β7 -0.0309 0.019 -1.649 0.102 -0.068 0.006

β8 -0.0277 0.019 -1.482 0.141 -0.065 0.009

β9 -0.0036 0.004 -0.952 0.343 -0.011 0.004

β10 0.0052 0.005 0.988 0.325 -0.005 0.016

β11 0.0040 0.005 0.762 0.448 -0.006 0.014

Omnibus: 24.270 Durbin-Watson: 1.693

Prob(Omnibus): 0.000 Jarque-Bera (JB): 114.122

Skew: 0.434 Prob(JB): 1.65e-25

Kurtosis: 7.581 Cond. No. 64.4

Dep. Variable: present_err R-squared: 0.942

Model: OLS Adj. R-squared: 0.937

Method: Least Squares F-statistic: 193.4

Covariance Type: nonrobust Prob (F-statistic): 1.05e-75

No. Observations: 144 Log-Likelihood: 228.17

Df Residuals: 132 AIC: -432.3

Df Model: 11 BIC: -396.7

coef std err t P> |t| [0.025 0.975]

β0 0.0372 0.019 1.982 0.050 7.32e-05 0.074

β1 -0.0113 0.027 -0.425 0.671 -0.064 0.041

β2 -0.0282 0.027 -1.062 0.290 -0.081 0.024

β3 0.0966 0.004 21.626 0.000 0.088 0.105

β4 -0.0767 0.006 -12.134 0.000 -0.089 -0.064

β5 -0.0882 0.006 -13.953 0.000 -0.101 -0.076

β6 0.0215 0.027 0.812 0.418 -0.031 0.074

β7 -0.0273 0.038 -0.729 0.467 -0.102 0.047

β8 -0.0275 0.038 -0.733 0.465 -0.102 0.047

β9 -0.0039 0.006 -0.619 0.537 -0.016 0.009

β10 0.0039 0.009 0.437 0.663 -0.014 0.022

β11 0.0051 0.009 0.574 0.567 -0.013 0.023

Omnibus: 29.738 Durbin-Watson: 2.677

Prob(Omnibus): 0.000 Jarque-Bera (JB): 208.504

Skew: 0.355 Prob(JB): 5.29e-46

Kurtosis: 8.852 Cond. No. 75.6

Present Error vs. Number of Queries

For this regression analysis on each dataset, we define the same variables as in before, with the

only change being that x3 now represents the logarithm of the total number of consistent queries

that RAP evaluates (rather than the size of the workload that RAP evaluates). With these variables,

we define the same full and restricted regression models as before, and we fit both to the results of

the RAP evaluations. Regression results for the full models (ADULT on left and LOANS on right)

are stated below.
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Dep. Variable: present_err R-squared: 0.889

Model: OLS Adj. R-squared: 0.879

Method: Least Squares F-statistic: 83.19

Covariance Type: nonrobust Prob (F-statistic): 3.83e-49

No. Observations: 126 Log-Likelihood: 227.07

Df Residuals: 114 AIC: -430.1

Df Model: 11 BIC: -396.1

coef std err t P> |t| [0.025 0.975]

β0 -0.3210 0.043 -7.438 0.000 -0.406 -0.235

β1 0.2882 0.061 4.722 0.000 0.167 0.409

β2 0.3014 0.061 4.939 0.000 0.181 0.422

β3 0.0472 0.004 12.856 0.000 0.040 0.054

β4 -0.0390 0.005 -7.516 0.000 -0.049 -0.029

β5 -0.0436 0.005 -8.398 0.000 -0.054 -0.033

β6 0.1198 0.057 2.110 0.037 0.007 0.232

β7 -0.1237 0.080 -1.540 0.126 -0.283 0.035

β8 -0.1189 0.080 -1.480 0.142 -0.278 0.040

β9 -0.0127 0.005 -2.742 0.007 -0.022 -0.004

β10 0.0123 0.007 1.886 0.062 -0.001 0.025

β11 0.0124 0.007 1.894 0.061 -0.001 0.025

Omnibus: 53.796 Durbin-Watson: 1.512

Prob(Omnibus): 0.000 Jarque-Bera (JB): 189.737

Skew: -1.528 Prob(JB): 6.30e-42

Kurtosis: 8.177 Cond. No. 572.

Dep. Variable: present_err R-squared: 0.887

Model: OLS Adj. R-squared: 0.877

Method: Least Squares F-statistic: 93.96

Covariance Type: nonrobust Prob (F-statistic): 7.68e-57

No. Observations: 144 Log-Likelihood: 180.50

Df Residuals: 132 AIC: -337.0

Df Model: 11 BIC: -301.4

coef std err t P> |t| [0.025 0.975]

β0 -0.6398 0.070 -9.171 0.000 -0.778 -0.502

β1 0.5254 0.099 5.326 0.000 0.330 0.721

β2 0.5873 0.099 5.952 0.000 0.392 0.782

β3 0.0779 0.005 14.839 0.000 0.068 0.088

β4 -0.0618 0.007 -8.321 0.000 -0.076 -0.047

β5 -0.0709 0.007 -9.550 0.000 -0.086 -0.056

β6 0.1453 0.096 1.509 0.134 -0.045 0.336

β7 -0.1293 0.136 -0.949 0.344 -0.399 0.140

β8 -0.1474 0.136 -1.082 0.281 -0.417 0.122

β9 -0.0240 0.007 -3.647 0.000 -0.037 -0.011

β10 0.0195 0.009 2.088 0.039 0.001 0.038

β11 0.0227 0.009 2.431 0.016 0.004 0.041

Omnibus: 18.588 Durbin-Watson: 1.775

Prob(Omnibus): 0.000 Jarque-Bera (JB): 78.893

Skew: -0.142 Prob(JB): 7.39e-18

Kurtosis: 6.615 Cond. No. 726.
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Chapter 5

Conclusions

As data analysis increasingly relies on the use of personal data, the value of practical, useful,

differentially private mechanisms increases as well. Significant research effort has been devoted

to designing and analyzing mechanisms that satisfy DP. However, less attention has been devoted

to bridging the gap between theory and practice in order to make these DP mechanisms useful

for real-world applications. In this thesis, we make differential privacy more useful in practice

by removing barriers that hinder its real-world adoption. We classify these barriers into three

distinct challenges, which we individually resolve in the chapters of this thesis.

We begin in Chapter 2 by addressing the first high-level challenge of this thesis: improving

trust models of DP to match individuals’ privacy expectations while simultaneously solving prac-

tical, data-sensitive tasks with high utility. In this chapter, we define a hybrid model of DP that,

in many practical scenarios, can better match individuals’ privacy expectations than either of the

two classic trust models in DP.Within this hybrid model, we address the high-level research ques-

tion: how can we design DP mechanisms that achieve high utility for problems of practical interest?

To answer this question, we study two fundamental data science problems: heavy hitter discovery

and estimation as well as mean estimation. For both problems, we concretely determine: 1) how

mechanisms’ utilities within the hybrid model can be understood and contextualized relative to

the classic trust models, 2) how DP mechanisms can be designed in the hybrid model, and 3) how

the privacy and utility of hybrid mechanisms depends on the computations performed and on
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interactions between the individuals. Our design and analysis of high-utility hybrid mechanisms

improves the state of the art for both the heavy hitter problem and the mean estimation problem.

Additionally, our findings from both problems yield insights into the power of the hybrid model

and provide a blueprint for practitioners to design high-utility mechanisms within it in the future.

In Chapter 3, we turn our attention to the second high-level challenge of this thesis: enabling

the quantification of privacy and utility for important, real-world DP mechanisms. Specifically,

we address the high-level research question: how can we rigorously define a hyperparameterized

DP mechanism’s privacy–utility trade-off, and then how can we design a practical method for quan-

tifying it? We answer the first part of this question by rigorously defining the privacy–utility

trade-off in terms of the mechanism’s privacy–utility Pareto front. We then define both the prob-

lem of estimating a privacy–utility Pareto front and how the quality of an estimated Pareto front

is measured. We then detail DPareto, our proposed method to efficiently estimate a Pareto front

using techniques from multi-objective Bayesian optimization. We comprehensively empirically

evaluate DPareto on a variety of real-world machine learning tasks involving multiple models,

DP optimizers, and datasets. Comparing DPareto’s results to baseline methods for Pareto front

estimation, we find that DPareto is highly efficient and effective at estimating the privacy–utility

Pareto fronts of complex, hyperparameterized DP mechanisms. Taken together, these evaluation

results showcase DPareto’s practicality, enabling decision-makers to take informed actions when

balancing the privacy–utility trade-off in real-world deployments of DP mechanisms.

In Chapter 4, we address the final high-level challenge of this thesis: resolving the open ques-

tion of how to improve the effectiveness and efficiency of DP mechanisms for the foundational

data analysis problem of privately answering a large number of queries. Concretely, we address

the high-level research question: to what extent are differentially private mechanisms able to an-

swer a large number of statistical queries efficiently and with low error? We analyze this problem in

two settings, the classic prespecified queries setting and a new setting that we introduced where
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only partial knowledge of the queries is available to the DP mechanism in advance. In both set-

tings, our contributions are grounded in the state-of-the-art DP mechanism for answering large

numbers of queries, the RAPmechanism. In the prespecified queries setting, we perform a focused

but thorough reproducibility study on Aydore et al.’s original evaluation of RAP to clarify its value

and strengthen its adoptability for practical uses. We also expand the class of queries that RAP

is capable of evaluating, thus extending RAP’s applicability in practice. Aside from the prespeci-

fied queries setting, we concretely specify a new partial knowledge setting where a mechanism

is provided with a set of historically posed queries that are similar to queries that will be posed

in the future. In this setting, we define a machine learning inspired utility measure to quantify

a mechanism’s ability to answer such future queries. Then, leveraging this utility measure, we

evaluate RAP’s suitability for generating synthetic datasets to answer queries posed in the future,

finding that it is both efficient and effective. Our findings in this chapter further the state of the

art in differentially private large-scale query answering and open new directions for future work

on other problems in differential privacy within our newly defined partial knowledge setting.
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